Translational implications of newly characterized pathogenic pathways in systemic lupus erythematosus

免疫学 贝里穆马布 医学 先天免疫系统 疾病 计算生物学 免疫系统 生物信息学 B细胞 生物 抗体 B细胞激活因子 病理
作者
Mariele Gatto,Roberto Depascale,Ana‐Luisa Stefanski,Eva Schrezenmeier,Thomas Dörner
出处
期刊:Best Practice & Research: Clinical Rheumatology [Elsevier]
卷期号:37 (4): 101864-101864 被引量:2
标识
DOI:10.1016/j.berh.2023.101864
摘要

Improved characterization of relevant pathogenic pathways in systemic lupus erythematosus (SLE) has been further delineated over the last decades. This led to the development of targeted treatments including belimumab and anifrolumab, which recently became available in clinics. Therapeutic targets in SLE encompass interferon (IFN) signaling, B-T costimulation including immune checkpoints, and increasing modalities of B lineage targeting, such as chimeric antigen receptor (CAR) T cells directed against CD19 or sequential anti-B cell targeting. Patient profiling based on characterization of underlying molecular abnormalities, often performed through comprehensive omics analyses, has recently been shown to better predict patients' treatment responses and also holds promise to unravel key molecular mechanisms driving SLE. SLE carries two key signatures, namely the IFN and B lineage/plasma cell signatures. Recent advances in SLE treatments clearly indicate that targeting innate and adaptive immunity is successful in such a complex autoimmune disease. Although those signatures may interact at the molecular level and provide the basis for the first selective treatments in SLE, it remains to be clarified whether these distinct treatments show different treatment responses among certain patient subsets. In fact, notwithstanding the remarkable amount of novel clues for innovative SLE treatment, harmonization of big data within tailored treatment strategies will be instrumental to better understand and treat this challenging autoimmune disorder. This review will provide an overview of recent improvements in SLE pathogenesis, related insights by analyses of big data and machine learning as well as technical improvements in conducting clinical trials with the ultimate goal that translational research results in improved patient outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暮色陈陈发布了新的文献求助10
刚刚
蓝天发布了新的文献求助10
刚刚
慕海象龟完成签到,获得积分10
刚刚
刚刚
kento应助太难啦采纳,获得50
1秒前
面包发布了新的文献求助10
1秒前
磷酸瞳发布了新的文献求助30
2秒前
慕青应助zhangnan采纳,获得10
2秒前
2秒前
852应助阿博采纳,获得10
2秒前
lucky发布了新的文献求助10
2秒前
jiangjiang完成签到,获得积分20
2秒前
cheng完成签到,获得积分10
2秒前
搞怪的幻巧完成签到,获得积分10
2秒前
科研通AI6.1应助白白白采纳,获得10
3秒前
孤独的书雁完成签到,获得积分10
3秒前
朱朱发布了新的文献求助10
4秒前
4秒前
看不懂完成签到,获得积分10
4秒前
科研通AI6.1应助蛋总采纳,获得30
4秒前
柴先生完成签到,获得积分10
5秒前
Magic发布了新的文献求助10
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
Zhao完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
追寻依风发布了新的文献求助10
7秒前
qwp发布了新的文献求助10
7秒前
看看发布了新的文献求助10
8秒前
8秒前
眯眯眼的裙子完成签到,获得积分10
10秒前
Lucia完成签到 ,获得积分10
10秒前
大盆完成签到,获得积分10
10秒前
开朗醉波发布了新的文献求助10
11秒前
11秒前
泡菜鱼oo完成签到,获得积分20
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933