Translational implications of newly characterized pathogenic pathways in systemic lupus erythematosus

免疫学 贝里穆马布 医学 先天免疫系统 疾病 计算生物学 免疫系统 生物信息学 B细胞 生物 抗体 B细胞激活因子 病理
作者
Mariele Gatto,Roberto Depascale,Ana‐Luisa Stefanski,Eva Schrezenmeier,Thomas Dörner
出处
期刊:Best Practice & Research: Clinical Rheumatology [Elsevier]
卷期号:37 (4): 101864-101864 被引量:2
标识
DOI:10.1016/j.berh.2023.101864
摘要

Improved characterization of relevant pathogenic pathways in systemic lupus erythematosus (SLE) has been further delineated over the last decades. This led to the development of targeted treatments including belimumab and anifrolumab, which recently became available in clinics. Therapeutic targets in SLE encompass interferon (IFN) signaling, B-T costimulation including immune checkpoints, and increasing modalities of B lineage targeting, such as chimeric antigen receptor (CAR) T cells directed against CD19 or sequential anti-B cell targeting. Patient profiling based on characterization of underlying molecular abnormalities, often performed through comprehensive omics analyses, has recently been shown to better predict patients' treatment responses and also holds promise to unravel key molecular mechanisms driving SLE. SLE carries two key signatures, namely the IFN and B lineage/plasma cell signatures. Recent advances in SLE treatments clearly indicate that targeting innate and adaptive immunity is successful in such a complex autoimmune disease. Although those signatures may interact at the molecular level and provide the basis for the first selective treatments in SLE, it remains to be clarified whether these distinct treatments show different treatment responses among certain patient subsets. In fact, notwithstanding the remarkable amount of novel clues for innovative SLE treatment, harmonization of big data within tailored treatment strategies will be instrumental to better understand and treat this challenging autoimmune disorder. This review will provide an overview of recent improvements in SLE pathogenesis, related insights by analyses of big data and machine learning as well as technical improvements in conducting clinical trials with the ultimate goal that translational research results in improved patient outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
边港洋完成签到,获得积分10
1秒前
1秒前
凤羽发布了新的文献求助10
2秒前
灵巧听露发布了新的文献求助10
2秒前
可爱的函函应助猫猫无敌采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
6秒前
爆米花应助刁弘睿采纳,获得10
6秒前
6秒前
6秒前
缥缈海云完成签到,获得积分10
6秒前
7秒前
斯文败类应助沙场秋点兵采纳,获得10
8秒前
123完成签到,获得积分10
8秒前
9秒前
无辜问玉发布了新的文献求助10
9秒前
9秒前
10秒前
谨慎乐安发布了新的文献求助10
10秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
缥缈海云发布了新的文献求助10
13秒前
mylaodao发布了新的文献求助10
13秒前
14秒前
chen完成签到,获得积分10
15秒前
拾贰月发布了新的文献求助10
15秒前
俊杰完成签到,获得积分10
16秒前
阿菜完成签到,获得积分10
16秒前
wanghao完成签到,获得积分20
16秒前
善学以致用应助songjiatian采纳,获得10
17秒前
18秒前
18秒前
善学以致用应助追忆淮采纳,获得10
19秒前
Hello应助靓丽凝海采纳,获得10
19秒前
19秒前
毛笑冉完成签到,获得积分10
19秒前
fine发布了新的文献求助10
19秒前
20秒前
无辜问玉完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425