电化学
塔菲尔方程
化学
交换电流密度
法拉第效率
吸附
选择性
动能
碳纤维
化学工程
无机化学
催化作用
电极
材料科学
有机化学
物理化学
物理
量子力学
复合材料
复合数
工程类
作者
Mengjiao Zhuansun,Yue Liu,Ruihu Lu,Fan Zeng,Zhanyou Xu,Ying Wang,Yao‐Yue Yang,Ziyun Wang,Gengfeng Zheng,Yuhang Wang
标识
DOI:10.1002/anie.202309875
摘要
Advancing the performance of the Cu-catalyzed electrochemical CO2 reduction reaction (CO2 RR) is crucial for its practical applications. Still, the wettable pristine Cu surface often suffers from low exposure to CO2 , reducing the Faradaic efficiencies (FEs) and current densities for multi-carbon (C2+ ) products. Recent studies have proposed that increasing surface availability for CO2 by cation-exchange ionomers can enhance the C2+ product formation rates. However, due to the rapid formation and consumption of *CO, such promotion in reaction kinetics can shorten the residence of *CO whose adsorption determines C2+ selectivity, and thus the resulting C2+ FEs remain low. Herein, we discover that the electro-kinetic retardation caused by the strong hydrophobicity of quaternary ammonium group-functionalized polynorbornene ionomers can greatly prolong the *CO residence on Cu. This unconventional electro-kinetic effect is demonstrated by the increased Tafel slopes and the decreased sensitivity of *CO coverage change to potentials. As a result, the strongly hydrophobic Cu electrodes exhibit C2+ Faradaic efficiencies of ≈90 % at a partial current density of 223 mA cm-2 , more than twice of bare or hydrophilic Cu surfaces.
科研通智能强力驱动
Strongly Powered by AbleSci AI