Introducing an ionic conductive matrix to the cold-sintered Li1.3Al0.3Ti1.7(PO4)3-based composite solid electrolyte to enhance the electrical properties

电解质 材料科学 烧结 离子电导率 陶瓷 介电谱 锂(药物) 复合数 化学工程 电化学 电导率 离子液体 复合材料 化学 电极 有机化学 物理化学 工程类 内分泌学 医学 催化作用
作者
Sergio Ferrer-Nicomedes,Andrés Mormeneo‐Segarra,Nuria Vicente,A. Barba
出处
期刊:Journal of Power Sources [Elsevier]
卷期号:581: 233494-233494 被引量:8
标识
DOI:10.1016/j.jpowsour.2023.233494
摘要

In the present work, a Polymer-In-Ceramics (PIC) solid electrolyte based on Li1.3Al0.3Ti1.7(PO4)3 (LATP) and PEOn-LiTFSI (poly(ethylene oxide) - lithium bis(trifluoromethanesulfonyl)imide) is obtained via Cold Sintering Process (CSP), at a temperature of 150 °C without any post-heat treatment, this is 900 °C below the traditional sintering temperature. This novel study demonstrates the effect of the Transient Liquid Phase content (TLP) and the composition of the polymeric active filler on the final Composite Solid Electrolyte (CSE) properties, with the sintering process being monitored by in-operando Electrochemical Impedance Spectroscopy (EIS). Firstly, the 15 wt% of TLP is stated as the optimal liquid content based on the electrical answer and workability. Then, the (EO:Li+) molar ratio is studied from (1:1) to (8:1). The highest ionic conductivity of 1.04·10−4 S cm−1 and a relative density above 98% are achieved at room temperature when the TLP content is 15 wt% and the molar ratio (2:1), with the LATP content set in 90 wt%. Moreover, the activation energy (Ea) is drastically reduced, from 0.388 eV (LATP ceramic electrolyte) to 0.298 eV (PIC electrolyte), with a lithium transference number (tLi+) close to 1. Therefore, this research work proposes a potential solid electrolyte to substitute the traditional liquid electrolytes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳的忆寒应助Kiyotaka采纳,获得30
刚刚
刚刚
爆米花应助towerman采纳,获得10
1秒前
羊笨笨完成签到 ,获得积分10
1秒前
2秒前
光亮芷天完成签到,获得积分10
2秒前
2秒前
3秒前
粗犷的问夏完成签到,获得积分10
4秒前
知行合一完成签到 ,获得积分10
5秒前
5秒前
6秒前
李爱国应助晨曦采纳,获得10
7秒前
0128lun发布了新的文献求助10
7秒前
phd发布了新的文献求助10
8秒前
君无名完成签到 ,获得积分10
8秒前
经年发布了新的文献求助10
8秒前
QXR完成签到,获得积分10
9秒前
豆dou完成签到,获得积分10
9秒前
Dddd发布了新的文献求助10
9秒前
HCl完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
12秒前
12秒前
Hollen完成签到 ,获得积分10
13秒前
慕青应助学术蠕虫采纳,获得10
14秒前
14秒前
叶子发布了新的文献求助10
15秒前
orangel完成签到,获得积分10
16秒前
半壶月色半边天完成签到 ,获得积分10
17秒前
tmpstlml发布了新的文献求助10
17秒前
18秒前
18秒前
不安饼干完成签到 ,获得积分10
20秒前
活泼的飞鸟完成签到,获得积分10
20秒前
21秒前
xuyun发布了新的文献求助10
21秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808