Crop Mapping Based on Sentinel-2 Images Using Semantic Segmentation Model of Attention Mechanism

学习迁移 人工智能 分割 深度学习 计算机科学 分类 适应性 遥感 模式识别(心理学) 精准农业 机器学习 农业 地理 生态学 生物 考古
作者
Meixiang Gao,Tingyu Lu,Lei Wang
出处
期刊:Sensors [MDPI AG]
卷期号:23 (15): 7008-7008 被引量:2
标识
DOI:10.3390/s23157008
摘要

Using remote sensing images to identify crop plots and estimate crop planting area is an important part of agricultural remote sensing monitoring. High-resolution remote sensing images can provide rich information regarding texture, tone, shape, and spectrum of ground objects. With the advancement of sensor and information technologies, it is now possible to categorize crops with pinpoint accuracy. This study defines crop mapping as a semantic segmentation problem; therefore, a deep learning method is proposed to identify the distribution of corn and soybean using the differences in the spatial and spectral features of crops. The study area is located in the southwest of the Great Lakes in the United States, where corn and soybean cultivation is concentrated. The proposed attention mechanism deep learning model, A2SegNet, was trained and evaluated using three years of Sentinel-2 data, collected between 2019 and 2021. The experimental results show that this method is able to fully extract the spatial and spectral characteristics of crops, and its classification effect is significantly better than that of the baseline method, and it has better classification performance than other deep learning models. We cross verified the trained model on the test sets of different years through transfer learning in both spatiotemporal and spatial dimensions. Proving the effectiveness of the attention mechanism in the process of knowledge transfer, A2SegNet showed better adaptability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
LXN发布了新的文献求助10
刚刚
果艾琪发布了新的文献求助10
1秒前
小欣6116发布了新的文献求助10
1秒前
FashionBoy应助啊哦呃咦唔吁采纳,获得10
1秒前
okl发布了新的文献求助10
1秒前
展锋发布了新的文献求助10
3秒前
松数完成签到,获得积分10
3秒前
ark861023发布了新的文献求助10
3秒前
愉快的莹完成签到,获得积分10
4秒前
CipherSage应助嘛吉采纳,获得10
4秒前
shell应助Jacky77采纳,获得50
4秒前
jianlong0206完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
yannis发布了新的文献求助10
5秒前
老纪1999发布了新的文献求助10
5秒前
上官若男应助果艾琪采纳,获得10
5秒前
5秒前
RR完成签到,获得积分10
7秒前
松数发布了新的文献求助10
7秒前
李李发布了新的文献求助10
7秒前
xc完成签到,获得积分10
7秒前
8秒前
山西农大关注了科研通微信公众号
8秒前
Leticia发布了新的文献求助20
8秒前
万能图书馆应助无问采纳,获得10
8秒前
wanci应助Zz采纳,获得10
9秒前
完美世界应助单薄的砖家采纳,获得10
9秒前
JamesPei应助体贴薯片采纳,获得10
9秒前
9秒前
LXN完成签到,获得积分10
9秒前
CipherSage应助愉快的莹采纳,获得10
9秒前
paixxxxx发布了新的文献求助10
10秒前
11秒前
情怀应助少吃顿饭并不难采纳,获得10
11秒前
量子星尘发布了新的文献求助30
11秒前
11秒前
wyw123完成签到,获得积分10
11秒前
yeyeye完成签到,获得积分10
11秒前
LTT完成签到,获得积分20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718656
求助须知:如何正确求助?哪些是违规求助? 5253667
关于积分的说明 15286658
捐赠科研通 4868722
什么是DOI,文献DOI怎么找? 2614394
邀请新用户注册赠送积分活动 1564266
关于科研通互助平台的介绍 1521785