亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Noninvasive prediction of perineural invasion in intrahepatic cholangiocarcinoma by clinicoradiological features and computed tomography radiomics based on interpretable machine learning: a multicenter cohort study

医学 无线电技术 旁侵犯 队列 放射科 肝内胆管癌 计算机断层摄影术 内科学 癌症 病理
作者
Ziwei Liu,Chun Luo,Xinjie Chen,Yanqiu Feng,Jieying Feng,Rong Zhang,Fusheng Ouyang,Xiaohong Li,Zhilin Tan,Lingda Deng,Yifan Chen,Zhiping Cai,Ximing Zhang,Jiehong Liu,Wei Liu,Baoliang Guo,Qiugen Hu
出处
期刊:International Journal of Surgery [Wolters Kluwer]
被引量:17
标识
DOI:10.1097/js9.0000000000000881
摘要

Background: Perineural invasion (PNI) of intrahepatic cholangiocarcinoma (ICC) is a strong independent risk factor for tumor recurrence and long-term patient survival. However, there is a lack of non-invasive tools for accurately predicting the PNI status. We develop and validate a combined model incorporating radiomics signature and clinicoradiological features based on machine learning for predicting PNI in ICC, and used the Shapley Additive explanation (SHAP) to visualize the prediction process for clinical application. Methods: This retrospective and prospective study included 243 patients with pathologically diagnosed ICC (training, n=136; external validation, n=81; prospective, n=26, respectively) who underwent preoperative contrast-enhanced CT between January 2012 and May 2023 at three institutions (three tertiary referral centers in Guangdong Province, China). The ElasticNet was applied to select radiomics features and construct signature derived from CT images, and univariate and multivariate analyses by logistic regression were used to identify the significant clinical and radiological variables with PNI. A robust combined model incorporating radiomics signature and clinicoradiological features based on machine learning was developed and the SHAP was used to visualize the prediction process. A Kaplan–Meier survival analysis was performed to compare prognostic differences between PNI positive and negative groups and was conducted to explore the prognostic information of the combined model. Results: Among 243 patients (mean age, 61.2 y ± 11.0 (SD); 152 men and 91 women), 108 (44.4%) were diagnosed as PNI-positive. The radiomics signature was constructed by seven radiomics features, with areas under the curves (AUCs) of 0.792, 0.748, and 0.729 in the training, external validation, and prospective cohorts, respectively. Three significant clinicoradiological features were selected and combined with radiomics signature to construct a combined model using machine learning. The eXtreme Gradient Boosting (XGBoost) exhibited improved accuracy and robustness (AUCs of 0.884, 0.831, and 0.831, respectively). Survival analysis showed the construction combined model could be used to stratify relapse-free survival (hazard ratio, 1.933; 95% confidence interval (CI): 1.093–3.418; P =0.021). Conclusions: We developed and validated a robust combined model incorporating radiomics signature and clinicoradiological features based on machine learning to accurately identify the PNI statuses of ICC, and visualize the prediction process through SHAP for clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
23秒前
23秒前
23秒前
沙海沉戈完成签到,获得积分0
24秒前
001完成签到 ,获得积分10
59秒前
minuxSCI完成签到,获得积分10
1分钟前
1分钟前
充电宝应助张立人采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
张立人发布了新的文献求助10
2分钟前
开心每一天完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
6分钟前
6分钟前
在水一方应助可靠的寒风采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
清逸之风完成签到 ,获得积分10
7分钟前
al完成签到 ,获得积分10
8分钟前
8分钟前
9分钟前
Yan发布了新的文献求助10
9分钟前
9分钟前
天天快乐应助Amor采纳,获得10
9分钟前
nasci发布了新的文献求助10
9分钟前
10分钟前
Amor发布了新的文献求助10
10分钟前
Amor完成签到,获得积分10
10分钟前
10分钟前
10分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Questioning in the Primary School 500
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
频率源分析与设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3686775
求助须知:如何正确求助?哪些是违规求助? 3237093
关于积分的说明 9829486
捐赠科研通 2949062
什么是DOI,文献DOI怎么找? 1617190
邀请新用户注册赠送积分活动 764126
科研通“疑难数据库(出版商)”最低求助积分说明 738360