清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Non-invasive prediction of perineural invasion in intrahepatic cholangiocarcinoma by clinicoradiological features and computed tomography radiomics based on interpretable machine learning: a multicenter cohort study

医学 无线电技术 旁侵犯 逻辑回归 单变量 放射科 单变量分析 前瞻性队列研究 磁共振成像 多元分析 内科学 肿瘤科 多元统计 机器学习 癌症 计算机科学
作者
Ziwei Liu,Chun Luo,Xinjie Chen,Yanqiu Feng,Jieying Feng,Rong Zhang,Fusheng Ouyang,Xiaohong Li,Zhilin Tan,Lingda Deng,Yifan Chen,Zhiping Cai,Ximing Zhang,Jiehong Liu,Wei Liu,Baoliang Guo,Qiugen Hu
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:110 (2): 1039-1051 被引量:5
标识
DOI:10.1097/js9.0000000000000881
摘要

Background: Perineural invasion (PNI) of intrahepatic cholangiocarcinoma (ICC) is a strong independent risk factor for tumour recurrence and long-term patient survival. However, there is a lack of noninvasive tools for accurately predicting the PNI status. The authors develop and validate a combined model incorporating radiomics signature and clinicoradiological features based on machine learning for predicting PNI in ICC, and used the Shapley Additive explanation (SHAP) to visualize the prediction process for clinical application. Methods: This retrospective and prospective study included 243 patients with pathologically diagnosed ICC (training, n =136; external validation, n =81; prospective, n =26, respectively) who underwent preoperative contrast-enhanced computed tomography between January 2012 and May 2023 at three institutions (three tertiary referral centres in Guangdong Province, China). The ElasticNet was applied to select radiomics features and construct signature derived from computed tomography images, and univariate and multivariate analyses by logistic regression were used to identify the significant clinical and radiological variables with PNI. A robust combined model incorporating radiomics signature and clinicoradiological features based on machine learning was developed and the SHAP was used to visualize the prediction process. A Kaplan–Meier survival analysis was performed to compare prognostic differences between PNI-positive and PNI-negative groups and was conducted to explore the prognostic information of the combined model. Results: Among 243 patients (mean age, 61.2 years ± 11.0 (SD); 152 men and 91 women), 108 (44.4%) were diagnosed as PNI-positive. The radiomics signature was constructed by seven radiomics features, with areas under the curves of 0.792, 0.748, and 0.729 in the training, external validation, and prospective cohorts, respectively. Three significant clinicoradiological features were selected and combined with radiomics signature to construct a combined model using machine learning. The eXtreme Gradient Boosting exhibited improved accuracy and robustness (areas under the curves of 0.884, 0.831, and 0.831, respectively). Survival analysis showed the construction combined model could be used to stratify relapse-free survival (hazard ratio, 1.933; 95% CI: 1.093–3.418; P =0.021). Conclusions: We developed and validated a robust combined model incorporating radiomics signature and clinicoradiological features based on machine learning to accurately identify the PNI statuses of ICC, and visualize the prediction process through SHAP for clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GPY完成签到,获得积分10
1分钟前
xiaofu完成签到,获得积分10
1分钟前
imi完成签到 ,获得积分10
2分钟前
hongt05完成签到 ,获得积分10
2分钟前
可爱的函函应助穆振家采纳,获得10
2分钟前
2分钟前
穆振家发布了新的文献求助10
2分钟前
穆振家完成签到,获得积分10
3分钟前
giving完成签到 ,获得积分10
3分钟前
xiaolang2004完成签到,获得积分10
3分钟前
YifanWang应助xiaolang2004采纳,获得10
3分钟前
zai完成签到 ,获得积分10
4分钟前
leave完成签到 ,获得积分10
4分钟前
刘刘完成签到 ,获得积分10
4分钟前
研友_nxw2xL完成签到,获得积分10
4分钟前
muriel完成签到,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
研友_Ljqal8完成签到,获得积分10
5分钟前
vbnn完成签到 ,获得积分10
6分钟前
zxr完成签到 ,获得积分10
6分钟前
应夏山完成签到 ,获得积分10
6分钟前
名侦探柯基完成签到 ,获得积分10
6分钟前
7分钟前
lalala发布了新的文献求助10
8分钟前
爱静静应助科研通管家采纳,获得10
8分钟前
爱静静应助科研通管家采纳,获得10
8分钟前
8分钟前
Outsider完成签到,获得积分10
9分钟前
9分钟前
土豪的灵竹完成签到 ,获得积分10
9分钟前
10分钟前
喜悦的飞飞完成签到,获得积分10
10分钟前
lalala发布了新的文献求助10
10分钟前
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
酷波er应助Kevin采纳,获得10
11分钟前
11分钟前
11分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171584
求助须知:如何正确求助?哪些是违规求助? 2822457
关于积分的说明 7939252
捐赠科研通 2483077
什么是DOI,文献DOI怎么找? 1322962
科研通“疑难数据库(出版商)”最低求助积分说明 633826
版权声明 602647