Noninvasive prediction of perineural invasion in intrahepatic cholangiocarcinoma by clinicoradiological features and computed tomography radiomics based on interpretable machine learning: a multicenter cohort study

医学 无线电技术 旁侵犯 队列 放射科 肝内胆管癌 计算机断层摄影术 内科学 癌症 病理
作者
Ziwei Liu,Chun Luo,Xinjie Chen,Yanqiu Feng,Jieying Feng,Rong Zhang,Fusheng Ouyang,Xiaohong Li,Zhilin Tan,Lingda Deng,Yifan Chen,Zhiping Cai,Ximing Zhang,Jiehong Liu,Wei Liu,Baoliang Guo,Qiugen Hu
出处
期刊:International Journal of Surgery [Wolters Kluwer]
被引量:35
标识
DOI:10.1097/js9.0000000000000881
摘要

Background: Perineural invasion (PNI) of intrahepatic cholangiocarcinoma (ICC) is a strong independent risk factor for tumor recurrence and long-term patient survival. However, there is a lack of non-invasive tools for accurately predicting the PNI status. We develop and validate a combined model incorporating radiomics signature and clinicoradiological features based on machine learning for predicting PNI in ICC, and used the Shapley Additive explanation (SHAP) to visualize the prediction process for clinical application. Methods: This retrospective and prospective study included 243 patients with pathologically diagnosed ICC (training, n=136; external validation, n=81; prospective, n=26, respectively) who underwent preoperative contrast-enhanced CT between January 2012 and May 2023 at three institutions (three tertiary referral centers in Guangdong Province, China). The ElasticNet was applied to select radiomics features and construct signature derived from CT images, and univariate and multivariate analyses by logistic regression were used to identify the significant clinical and radiological variables with PNI. A robust combined model incorporating radiomics signature and clinicoradiological features based on machine learning was developed and the SHAP was used to visualize the prediction process. A Kaplan–Meier survival analysis was performed to compare prognostic differences between PNI positive and negative groups and was conducted to explore the prognostic information of the combined model. Results: Among 243 patients (mean age, 61.2 y ± 11.0 (SD); 152 men and 91 women), 108 (44.4%) were diagnosed as PNI-positive. The radiomics signature was constructed by seven radiomics features, with areas under the curves (AUCs) of 0.792, 0.748, and 0.729 in the training, external validation, and prospective cohorts, respectively. Three significant clinicoradiological features were selected and combined with radiomics signature to construct a combined model using machine learning. The eXtreme Gradient Boosting (XGBoost) exhibited improved accuracy and robustness (AUCs of 0.884, 0.831, and 0.831, respectively). Survival analysis showed the construction combined model could be used to stratify relapse-free survival (hazard ratio, 1.933; 95% confidence interval (CI): 1.093–3.418; P =0.021). Conclusions: We developed and validated a robust combined model incorporating radiomics signature and clinicoradiological features based on machine learning to accurately identify the PNI statuses of ICC, and visualize the prediction process through SHAP for clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白巧小丸子完成签到,获得积分10
1秒前
现代雪晴发布了新的文献求助10
1秒前
Emma发布了新的文献求助10
2秒前
maymei发布了新的文献求助10
2秒前
玉衡完成签到,获得积分10
2秒前
畅快以菱完成签到,获得积分10
2秒前
xhjh03完成签到,获得积分10
3秒前
3秒前
3秒前
bkagyin应助诸葛不亮采纳,获得10
3秒前
shufeiyan完成签到,获得积分10
4秒前
4秒前
苏源完成签到,获得积分10
4秒前
英雷完成签到,获得积分10
5秒前
5秒前
CharlotteBlue应助zhaeng采纳,获得30
5秒前
5秒前
Valora发布了新的文献求助50
6秒前
眼睛大雨筠应助SOulemaftg采纳,获得50
6秒前
谨慎的向南完成签到,获得积分10
7秒前
7秒前
PDIF-CN2发布了新的文献求助10
8秒前
yznfly应助Emma采纳,获得30
8秒前
COSMAO关注了科研通微信公众号
9秒前
mx应助大美女采纳,获得10
9秒前
Mira发布了新的文献求助10
9秒前
外向的易蓉完成签到 ,获得积分10
9秒前
ly发布了新的文献求助10
10秒前
炸炸呦完成签到,获得积分10
10秒前
所所应助现代雪晴采纳,获得10
10秒前
11秒前
专一的鸡翅完成签到 ,获得积分10
11秒前
12秒前
小马甲应助善善采纳,获得10
12秒前
12秒前
不知名的呆毛完成签到 ,获得积分10
14秒前
王九八发布了新的文献求助10
14秒前
科目三应助谨慎的向南采纳,获得10
15秒前
Hello应助等待的若云采纳,获得10
15秒前
浏阳河发布了新的文献求助10
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962134
求助须知:如何正确求助?哪些是违规求助? 3508388
关于积分的说明 11140655
捐赠科研通 3241036
什么是DOI,文献DOI怎么找? 1791184
邀请新用户注册赠送积分活动 872809
科研通“疑难数据库(出版商)”最低求助积分说明 803371