Noninvasive prediction of perineural invasion in intrahepatic cholangiocarcinoma by clinicoradiological features and computed tomography radiomics based on interpretable machine learning: a multicenter cohort study

医学 无线电技术 旁侵犯 队列 放射科 肝内胆管癌 计算机断层摄影术 内科学 癌症 病理
作者
Ziwei Liu,Chun Luo,Xinjie Chen,Yanqiu Feng,Jieying Feng,Rong Zhang,Fusheng Ouyang,Xiaohong Li,Zhilin Tan,Lingda Deng,Yifan Chen,Zhiping Cai,Ximing Zhang,Jiehong Liu,Wei Liu,Baoliang Guo,Qiugen Hu
出处
期刊:International Journal of Surgery [Wolters Kluwer]
被引量:43
标识
DOI:10.1097/js9.0000000000000881
摘要

Background: Perineural invasion (PNI) of intrahepatic cholangiocarcinoma (ICC) is a strong independent risk factor for tumor recurrence and long-term patient survival. However, there is a lack of non-invasive tools for accurately predicting the PNI status. We develop and validate a combined model incorporating radiomics signature and clinicoradiological features based on machine learning for predicting PNI in ICC, and used the Shapley Additive explanation (SHAP) to visualize the prediction process for clinical application. Methods: This retrospective and prospective study included 243 patients with pathologically diagnosed ICC (training, n=136; external validation, n=81; prospective, n=26, respectively) who underwent preoperative contrast-enhanced CT between January 2012 and May 2023 at three institutions (three tertiary referral centers in Guangdong Province, China). The ElasticNet was applied to select radiomics features and construct signature derived from CT images, and univariate and multivariate analyses by logistic regression were used to identify the significant clinical and radiological variables with PNI. A robust combined model incorporating radiomics signature and clinicoradiological features based on machine learning was developed and the SHAP was used to visualize the prediction process. A Kaplan–Meier survival analysis was performed to compare prognostic differences between PNI positive and negative groups and was conducted to explore the prognostic information of the combined model. Results: Among 243 patients (mean age, 61.2 y ± 11.0 (SD); 152 men and 91 women), 108 (44.4%) were diagnosed as PNI-positive. The radiomics signature was constructed by seven radiomics features, with areas under the curves (AUCs) of 0.792, 0.748, and 0.729 in the training, external validation, and prospective cohorts, respectively. Three significant clinicoradiological features were selected and combined with radiomics signature to construct a combined model using machine learning. The eXtreme Gradient Boosting (XGBoost) exhibited improved accuracy and robustness (AUCs of 0.884, 0.831, and 0.831, respectively). Survival analysis showed the construction combined model could be used to stratify relapse-free survival (hazard ratio, 1.933; 95% confidence interval (CI): 1.093–3.418; P =0.021). Conclusions: We developed and validated a robust combined model incorporating radiomics signature and clinicoradiological features based on machine learning to accurately identify the PNI statuses of ICC, and visualize the prediction process through SHAP for clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣喜胡萝卜完成签到,获得积分10
刚刚
狄语蕊完成签到,获得积分10
刚刚
1397完成签到 ,获得积分10
2秒前
fanqiaqia发布了新的文献求助10
2秒前
orixero应助KK采纳,获得10
2秒前
隐形傲霜完成签到 ,获得积分10
2秒前
英俊的铭应助纪秋采纳,获得10
2秒前
月月鸟完成签到,获得积分10
3秒前
3秒前
nosay完成签到,获得积分10
3秒前
4秒前
Rollin完成签到,获得积分10
4秒前
Akim应助怕黑鑫采纳,获得10
5秒前
檀秀婷发布了新的文献求助10
5秒前
5秒前
5秒前
纯真忆秋完成签到,获得积分10
6秒前
罗小黑发布了新的文献求助10
6秒前
6秒前
bhfhq完成签到,获得积分10
7秒前
无语的夜山完成签到,获得积分20
7秒前
羞涩的西牛完成签到 ,获得积分10
8秒前
冷静的谷云完成签到,获得积分20
8秒前
xiaoE完成签到,获得积分10
8秒前
8秒前
双月完成签到,获得积分10
9秒前
yjq完成签到,获得积分10
10秒前
u2u2完成签到,获得积分10
10秒前
10秒前
Katrina完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
swb完成签到,获得积分10
11秒前
丘比特应助高贵的莫言采纳,获得10
12秒前
zzz完成签到,获得积分10
12秒前
ll完成签到 ,获得积分10
12秒前
13秒前
XDF完成签到 ,获得积分10
13秒前
13秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Fermented Coffee Market 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5235264
求助须知:如何正确求助?哪些是违规求助? 4403733
关于积分的说明 13703838
捐赠科研通 4271112
什么是DOI,文献DOI怎么找? 2343888
邀请新用户注册赠送积分活动 1341076
关于科研通互助平台的介绍 1298572