PID控制器
控制理论(社会学)
径向基函数
人工神经网络
径向基函数网络
主动悬架
悬挂(拓扑)
基函数
基础(线性代数)
控制器(灌溉)
计算机科学
趋同(经济学)
控制系统
功能(生物学)
控制工程
工程类
控制(管理)
数学
人工智能
温度控制
执行机构
电气工程
同伦
生物
数学分析
经济
纯数学
进化生物学
农学
经济增长
几何学
出处
期刊:Actuators
[MDPI AG]
日期:2023-11-24
卷期号:12 (12): 437-437
被引量:4
摘要
Suspension systems are critical parts of modern cars. In this study, a radial basis function neural networks-based adaptive PID optimal method is presented for vehicle suspension systems. To avoid the shortcoming that the parameters of PID control are determined by experience in the traditional method, to avoid the local optimality problem and the slow rate of convergence in the modern intelligence method, radial basis function neural networks are applied in this paper. First, a quarter-car suspension is presented. Then, the radial basis function neural networks are employed to obtain the parameters of proportional, integral, and derivate components that are used in PID control. The simulation is conducted later. Next, a comparison of the progress between uncontrolled suspension, the radial basis function-based PID control, the H∞ control method, and the FPM control method is presented. According to the simulation results, the proposed control method performs better than the others. This contrast reveals the superior characteristics of the suggested control strategy.
科研通智能强力驱动
Strongly Powered by AbleSci AI