亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Class-wise Graph Embedding-Based Active Learning for Hyperspectral Image Classification

计算机科学 人工智能 高光谱成像 模式识别(心理学) 图形 嵌入 分类器(UML) 卷积神经网络 标记数据 图嵌入 上下文图像分类 机器学习 数据挖掘 图像(数学) 理论计算机科学
作者
Xiaolong Liao,Bing Tu,Liangpei Zhang,Antonio Plaza
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:13
标识
DOI:10.1109/tgrs.2023.3309032
摘要

Deep learning (DL) techniques have shown remarkable progress in remotely sensed hyperspectral image (HSI) classification tasks. The performance of DL-based models highly relies on the quality and quantity of labeled data. However, manual labeling is a laborious and expensive process that requires substantial efforts from human experts. Active learning (AL) techniques have been developed to alleviate the burden of manual annotation by selecting the most informative and uncertain samples for labeling. In this paper, we propose a new class-wise graph embedding-based AL (CGE-AL) framework implemented by a class-wise graph convolutional network (CGCN). First, we train a classifier with labeled data and infer latent features from labeled and unlabeled samples with the trained parameter. Then, we group the labeled data into multiple one-label sets by category. In a class-wise manner, we initialize the nodes of the graph with one-label and unlabeled features, which are then fed into CGCN. By updating the graph parameters with binary loss, CGCNs measure the uncertainty between labeled nodes and unlabeled nodes. To select the most valuable sample for labeling, we adopt the class minimum uncertainty to query the unlabeled nodes with higher overall uncertainty. We repeat this process with the updated labeled set to retrain our classification model and CGCNs. Extensive experiments demonstrate the outstanding performance of our method compared to other state-of-the-art AL-based approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滕皓轩完成签到 ,获得积分10
8秒前
无花果应助白华苍松采纳,获得10
9秒前
13秒前
BowieHuang应助科研通管家采纳,获得10
17秒前
36秒前
003完成签到,获得积分10
49秒前
宫戚戚完成签到 ,获得积分10
57秒前
1分钟前
1分钟前
002完成签到,获得积分10
1分钟前
1分钟前
1分钟前
完美世界应助无风采纳,获得10
1分钟前
科研通AI6应助明亮囧采纳,获得10
1分钟前
George发布了新的文献求助10
1分钟前
001完成签到,获得积分0
1分钟前
慕青应助George采纳,获得30
1分钟前
1分钟前
2分钟前
wallacetan完成签到,获得积分10
2分钟前
无风发布了新的文献求助10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
星辰大海应助科研通管家采纳,获得10
2分钟前
张梅娟发布了新的文献求助10
2分钟前
2分钟前
George发布了新的文献求助30
2分钟前
张梅娟完成签到,获得积分10
2分钟前
3分钟前
小鸟芋圆露露完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
烟花应助白华苍松采纳,获得10
4分钟前
4分钟前
George发布了新的文献求助10
4分钟前
星辰大海应助龙龍泷采纳,获得10
4分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
传奇3应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590496
求助须知:如何正确求助?哪些是违规求助? 4674778
关于积分的说明 14795276
捐赠科研通 4632436
什么是DOI,文献DOI怎么找? 2532781
邀请新用户注册赠送积分活动 1501293
关于科研通互助平台的介绍 1468676