Class-wise Graph Embedding-Based Active Learning for Hyperspectral Image Classification

计算机科学 人工智能 高光谱成像 模式识别(心理学) 图形 嵌入 分类器(UML) 卷积神经网络 标记数据 图嵌入 上下文图像分类 机器学习 数据挖掘 图像(数学) 理论计算机科学
作者
Xiaolong Liao,Bing Tu,Liangpei Zhang,Antonio Plaza
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:13
标识
DOI:10.1109/tgrs.2023.3309032
摘要

Deep learning (DL) techniques have shown remarkable progress in remotely sensed hyperspectral image (HSI) classification tasks. The performance of DL-based models highly relies on the quality and quantity of labeled data. However, manual labeling is a laborious and expensive process that requires substantial efforts from human experts. Active learning (AL) techniques have been developed to alleviate the burden of manual annotation by selecting the most informative and uncertain samples for labeling. In this paper, we propose a new class-wise graph embedding-based AL (CGE-AL) framework implemented by a class-wise graph convolutional network (CGCN). First, we train a classifier with labeled data and infer latent features from labeled and unlabeled samples with the trained parameter. Then, we group the labeled data into multiple one-label sets by category. In a class-wise manner, we initialize the nodes of the graph with one-label and unlabeled features, which are then fed into CGCN. By updating the graph parameters with binary loss, CGCNs measure the uncertainty between labeled nodes and unlabeled nodes. To select the most valuable sample for labeling, we adopt the class minimum uncertainty to query the unlabeled nodes with higher overall uncertainty. We repeat this process with the updated labeled set to retrain our classification model and CGCNs. Extensive experiments demonstrate the outstanding performance of our method compared to other state-of-the-art AL-based approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Danielle完成签到,获得积分10
1秒前
CodeCraft应助zzZ采纳,获得10
3秒前
彭于晏应助XXC采纳,获得10
4秒前
科目三应助梁晓雪采纳,获得10
4秒前
科研通AI5应助huakun采纳,获得10
5秒前
平淡依瑶发布了新的文献求助10
5秒前
001发布了新的文献求助10
5秒前
秉生天地完成签到,获得积分10
5秒前
老实寒云发布了新的文献求助10
6秒前
6秒前
8秒前
科研通AI6应助谢兰采纳,获得10
9秒前
wxyshare应助烤番薯采纳,获得10
9秒前
9秒前
科研通AI6应助张立敏采纳,获得10
9秒前
领导范儿应助樊书南采纳,获得10
9秒前
sxyc5完成签到,获得积分10
9秒前
10秒前
彩虹宇宙完成签到 ,获得积分10
10秒前
11秒前
11秒前
xuhandi发布了新的文献求助10
12秒前
12秒前
12秒前
jiejie321完成签到,获得积分10
13秒前
从容雨筠完成签到,获得积分10
14秒前
14秒前
京阿尼完成签到,获得积分10
15秒前
15秒前
Lucas应助冷傲的青曼采纳,获得10
15秒前
15秒前
科研通AI5应助Alibizia采纳,获得10
15秒前
彭于晏应助麒麟采纳,获得10
16秒前
浮游应助苗苗王采纳,获得30
16秒前
16秒前
梁晓雪发布了新的文献求助10
16秒前
17秒前
123432发布了新的文献求助10
17秒前
vickie发布了新的文献求助10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5048169
求助须知:如何正确求助?哪些是违规求助? 4276803
关于积分的说明 13331169
捐赠科研通 4091278
什么是DOI,文献DOI怎么找? 2238889
邀请新用户注册赠送积分活动 1245897
关于科研通互助平台的介绍 1174356