Class-wise Graph Embedding-Based Active Learning for Hyperspectral Image Classification

计算机科学 人工智能 高光谱成像 模式识别(心理学) 图形 嵌入 分类器(UML) 卷积神经网络 标记数据 图嵌入 上下文图像分类 机器学习 数据挖掘 图像(数学) 理论计算机科学
作者
Xiaolong Liao,Bing Tu,Liangpei Zhang,Antonio Plaza
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:13
标识
DOI:10.1109/tgrs.2023.3309032
摘要

Deep learning (DL) techniques have shown remarkable progress in remotely sensed hyperspectral image (HSI) classification tasks. The performance of DL-based models highly relies on the quality and quantity of labeled data. However, manual labeling is a laborious and expensive process that requires substantial efforts from human experts. Active learning (AL) techniques have been developed to alleviate the burden of manual annotation by selecting the most informative and uncertain samples for labeling. In this paper, we propose a new class-wise graph embedding-based AL (CGE-AL) framework implemented by a class-wise graph convolutional network (CGCN). First, we train a classifier with labeled data and infer latent features from labeled and unlabeled samples with the trained parameter. Then, we group the labeled data into multiple one-label sets by category. In a class-wise manner, we initialize the nodes of the graph with one-label and unlabeled features, which are then fed into CGCN. By updating the graph parameters with binary loss, CGCNs measure the uncertainty between labeled nodes and unlabeled nodes. To select the most valuable sample for labeling, we adopt the class minimum uncertainty to query the unlabeled nodes with higher overall uncertainty. We repeat this process with the updated labeled set to retrain our classification model and CGCNs. Extensive experiments demonstrate the outstanding performance of our method compared to other state-of-the-art AL-based approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欧阳振应助清脆的夜白采纳,获得10
刚刚
YamDaamCaa应助meimale采纳,获得30
1秒前
桑尼号完成签到,获得积分10
1秒前
1秒前
赘婿应助elena采纳,获得10
3秒前
隐形曼青应助福明明采纳,获得10
3秒前
晨之曦光发布了新的文献求助10
3秒前
霏冉发布了新的文献求助10
3秒前
4秒前
Kitty完成签到,获得积分10
5秒前
5秒前
5秒前
感动城发布了新的文献求助10
6秒前
6秒前
斯文败类应助藤井树采纳,获得10
6秒前
ccccccwq完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
8秒前
8秒前
LBY完成签到,获得积分10
8秒前
8秒前
li应助科研通管家采纳,获得10
8秒前
8秒前
wu8577应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得50
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
怎么说应助科研通管家采纳,获得10
9秒前
科研助手6应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
9秒前
科研助手6应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
9秒前
搬运工应助科研通管家采纳,获得20
9秒前
Y先生应助科研通管家采纳,获得20
9秒前
Ava应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961728
求助须知:如何正确求助?哪些是违规求助? 3508080
关于积分的说明 11139419
捐赠科研通 3240738
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803344