计算机科学
人工智能
高光谱成像
模式识别(心理学)
图形
嵌入
分类器(UML)
卷积神经网络
标记数据
图嵌入
上下文图像分类
机器学习
数据挖掘
图像(数学)
理论计算机科学
作者
Xiaolong Liao,Bing Tu,Liangpei Zhang,Antonio Plaza
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing
[Institute of Electrical and Electronics Engineers]
日期:2023-01-01
卷期号:61: 1-13
被引量:13
标识
DOI:10.1109/tgrs.2023.3309032
摘要
Deep learning (DL) techniques have shown remarkable progress in remotely sensed hyperspectral image (HSI) classification tasks. The performance of DL-based models highly relies on the quality and quantity of labeled data. However, manual labeling is a laborious and expensive process that requires substantial efforts from human experts. Active learning (AL) techniques have been developed to alleviate the burden of manual annotation by selecting the most informative and uncertain samples for labeling. In this paper, we propose a new class-wise graph embedding-based AL (CGE-AL) framework implemented by a class-wise graph convolutional network (CGCN). First, we train a classifier with labeled data and infer latent features from labeled and unlabeled samples with the trained parameter. Then, we group the labeled data into multiple one-label sets by category. In a class-wise manner, we initialize the nodes of the graph with one-label and unlabeled features, which are then fed into CGCN. By updating the graph parameters with binary loss, CGCNs measure the uncertainty between labeled nodes and unlabeled nodes. To select the most valuable sample for labeling, we adopt the class minimum uncertainty to query the unlabeled nodes with higher overall uncertainty. We repeat this process with the updated labeled set to retrain our classification model and CGCNs. Extensive experiments demonstrate the outstanding performance of our method compared to other state-of-the-art AL-based approaches.
科研通智能强力驱动
Strongly Powered by AbleSci AI