XGBoost with Q-learning for complex data processing in business logistics management

计算机科学 供应链 效率低下 供应链管理 顾客满意度 Boosting(机器学习) 生产(经济) 运筹学 数据挖掘 工业工程 人工智能 业务 营销 经济 工程类 宏观经济学 微观经济学
作者
Jianlin Zhong,Xuelong Hu,O.A. Alghamdi,Samia Elattar,Saleh Al Sulaie
出处
期刊:Information Processing and Management [Elsevier]
卷期号:60 (5): 103466-103466 被引量:1
标识
DOI:10.1016/j.ipm.2023.103466
摘要

The modern business landscape is characterized by complex technical information, economic globalization, and high customer expectations. These factors have led to significant changes in various industries. To ensure customer satisfaction, companies rely on supply chain management (SCM) for the timely delivery of products and gathering feedback for analysis. The collected customer data is often complex and requires advanced methods for processing and management. To effectively manage demand and supply in real-time, businesses must have the ability to handle complex data. Due to the inefficiency and ineffectiveness of traditional methods for the increased data volume and speed, much-emerging research is being conducted on how to harness complex data in SCM. This paper examines the limitations of conventional methods and introduces an Artificial Intelligence (AI) approach based on Q-Learning algorithm with Extreme Gradient Boosting (QL-XGB) model. The QL-XGB method is applied to select suppliers and predict their future demand for the production of products. It is built on the foundation of accurate data and analysis of supply chain characteristics using metrics such as MAE and RMSE. The results show that the QL-XGB model with an accuracy rate of 96.02% outperforms QL and XGB models with respective accuracy rates of 93.44% and 94.68%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘十三发布了新的文献求助10
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
陈军应助科研通管家采纳,获得20
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得30
1秒前
lanxinyue应助科研通管家采纳,获得10
1秒前
lanxinyue应助科研通管家采纳,获得10
1秒前
1秒前
慕青应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
包容扬完成签到,获得积分10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
缓慢珠发布了新的文献求助10
2秒前
xiaoming应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
充电宝应助清脆慕山采纳,获得10
3秒前
happyboy2008完成签到,获得积分10
3秒前
lx给lx的求助进行了留言
3秒前
yang发布了新的文献求助10
4秒前
木木发布了新的文献求助10
4秒前
xtingkk发布了新的文献求助10
4秒前
嘘唏完成签到,获得积分20
4秒前
秋水仙碱发布了新的文献求助30
4秒前
韭菜发布了新的文献求助10
7秒前
8秒前
糖葫芦完成签到,获得积分10
9秒前
yyyyyqy完成签到,获得积分10
9秒前
田様应助汎影采纳,获得10
10秒前
10秒前
wwwjqw完成签到,获得积分10
10秒前
10秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138252
求助须知:如何正确求助?哪些是违规求助? 2789208
关于积分的说明 7790538
捐赠科研通 2445551
什么是DOI,文献DOI怎么找? 1300565
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601053