Poly (3, 4-ethylenedioxythiophene) engineered hollow Bi2O3 core-shell architectures for long cycle performance of flexible supercapacitors

超级电容器 材料科学 电容 电极 佩多:嘘 纳米技术 电化学 功率密度 化学工程 图层(电子) 化学 功率(物理) 物理化学 工程类 物理 量子力学
作者
Ying Huang,Jiaming Wang,Xiaoyu Ju,Shuai Zhang,Xu Sun
出处
期刊:Journal of energy storage [Elsevier]
卷期号:72: 108460-108460 被引量:15
标识
DOI:10.1016/j.est.2023.108460
摘要

The booming development of electronic devices has promoted the in-depth research on flexible supercapacitors. The structural design of core@shell can be regarded as an effective method of achieving excellent electrochemical performance and outstanding flexibility of electrode materials. Herein, a special structure of core@shell hybrid Bi2O3-x@carbon fiber@poly (3, 4-ethylenedioxythiophene) (Bi2O3-x@CF@PEDOT) electrode derived from a Bi-metal-organic framework (Bi-MOF) is fabricated by using the electrospinning technique, and using the stabilization, pyrolyzation and polymerization procedures. The amount of Bi-MOF is regulated to obtain an optimized flexible substrate (Bi2O3-x@CF). The free space of the hollow Bi2O3 microrod can effectively alleviate the volume expansion during long cycling processes and further promote ion diffusion. The effective optimizations for the structure and content could significantly improve the conductivity and electrochemical performance of the constructed electrode. The prepared Bi2O3–0.5@CF@PEDOT electrode exhibits a satisfied specific capacitance of 460 F g−1 (1 A g−1) and great cycling stability. The assembled symmetric supercapacitor yields a desired energy density (i.e., 16.4 Wh kg−1) and power density (i.e., 500.34 W kg−1), and remarkable cycling performance (i.e., 99 % capacitance retention after 8500 cycles). Moreover, the excellent flexibility of the device is demonstrated by folding the supercapacitor into different angles and without obvious capacitance loss. This work provides a special structural design method of constructing high-performance flexible electrodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wanci应助糖宝采纳,获得10
刚刚
归尘发布了新的文献求助10
1秒前
板栗驳回了YChen应助
1秒前
自然的芷蝶应助youy采纳,获得20
1秒前
1秒前
1秒前
2秒前
2秒前
洛城完成签到,获得积分10
2秒前
2秒前
Jay发布了新的文献求助10
2秒前
3秒前
3秒前
科研通AI6.1应助微光采纳,获得10
4秒前
4秒前
5秒前
5秒前
6秒前
刘媛媛完成签到,获得积分10
6秒前
abc发布了新的文献求助10
6秒前
6秒前
LIZ发布了新的文献求助10
6秒前
hahaha发布了新的文献求助10
7秒前
不知道发布了新的文献求助10
7秒前
Lucas应助aaaaaa采纳,获得10
7秒前
找文献的天才狗完成签到 ,获得积分10
8秒前
8秒前
彭于晏应助一年5篇采纳,获得10
8秒前
8秒前
JamesPei应助无忧的阳光采纳,获得10
8秒前
情怀应助发的不太好采纳,获得10
8秒前
打打应助晴朗采纳,获得10
9秒前
mimimi发布了新的文献求助10
9秒前
xrr完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
jiaheyuan发布了新的文献求助10
9秒前
10秒前
10秒前
科研通AI6.1应助风华采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933