Covalent Heterojunctions Enhance Bi2S3/Reduced Graphene Oxide (rGO) Nanocomposite Performance as Aqueous Zinc Ion Battery Material

材料科学 石墨烯 氧化物 阴极 X射线光电子能谱 纳米复合材料 电化学 化学工程 水溶液 无机化学 纳米技术 冶金 电极 化学 物理化学 工程类
作者
Dongni Zhao,Shaohua Zhang,Chun Lin,Jiefeng Ye,Yue Chen,Jian‐Min Zhang,Jianming Tao,Jiaxin Li,Yingbin Lin,Stijn F. L. Mertens,Oleg Kolosov,Zhigao Huang
出处
期刊:Meeting abstracts 卷期号:MA2023-01 (4): 837-837
标识
DOI:10.1149/ma2023-014837mtgabs
摘要

The shortage of lithium resources, safety and recycling difficulty has focused attention on alternative energy storage devices in recent years. The aqueous zinc-ion battery (ZIB) stands out against such a background because of its earth abundance, safety, and environmental friendliness. 1 However, the limited choice of cathode materials hinders the development of advanced high-energy-density aqueous ZIBs. At present, manganese oxide 2 and vanadium oxide 3 are the two most widely studied zinc-ion battery cathodes, but the migration of Zn 2+ in these materials is limited by the strong electrostatic interaction with lattice oxygen ions, resulting in poor reversible capacity. Metal sulfides, instead, may effectively improve the electrochemical performance reversibility of ZIBs. Layered metal sulfides have been extensively studied in monovalent cation (Li + , Na + , K + ) rechargeable batteries. 4 However, although limited studies with Bi 2 S 3 5,6 as ZIB cathode material exist, their detailed electrochemical charge storage and transfer mechanisms are not well understood. In this work, we explore the effect of covalent anchoring Bi 2 S 3 on reduced graphene oxide (rGO) on the stability and cycling performance as a cathode for aqueous ZIBs. During the hydrothermal synthesis, the reduced graphene oxide serves as the nucleation substrate enabling the formation of fine and uniformly sized Bi 2 S 3 grains, Figure 1 (a). Raman and X-ray photoelectron spectroscopy (XPS) confirm the formation of Bi-O-C heterojunctions during hydrothermal synthesis. These oxygen bridges serve as efficient electron transfer channels in the Bi 2 S 3 /rGO composite for rapid charge compensation during Zn 2+ incorporation/extraction. As a result, Bi 2 S 3 /rGO composite shows notably better rate performance and cycling stability compared with pristine Bi 2 S 3 . The specific capacity of Bi 2 S 3 -rGO8 composite is ~186 mAh g -1 at the current density of 500 mA g -1 after 150 cycles, considerably higher than unsupported Bi 2 S 3 . Additionally, the Bi 2 S 3 nucleated on GO with smaller particle sizes can shorten the transport path of zinc ions, which is beneficial for fast charge transfer. Therefore, Bi 2 S 3 -rGO8 can deliver more than 100 mAh g -1 at 10 A/g charge/discharge current density, Figure 1 (b). Also, the zinc storage mechanism was analyzed by X-ray diffraction spectroscopy (XRD) and XPS, indicating a reversible conversion reaction of Zn 2+ in the Bi 2 S 3 -rGO framework. During discharging, Zn 2+ is embedded in Bi 2 S 3 -rGO frame to form ZnS and Bi wrapped in rGO. The process is accompanied by the dissolution of bismuth into electrolyte and the formation of (ZnSO 4 )[Zn(OH) 2 ] 3 ·5H 2 O (ZHS) on the electrode surface. Inhibition of these two processes may further increase the cycle stability of Bi 2 S 3 -rGO. Rotating ring disc electrode (RRDE) measurements, in which we detect dissolved Bi, indicate that Bi dissolution in the electrolyte during charging/discharging is mitigated in Bi 2 S 3 /rGO electrode, compared to pristine Bi 2 S 3 . References: Z. Li, L. Wu, S. Dong, T. Xu, S. Li, Y. An, J. Jiang and X. Zhang, Adv. Funct. Mater. , 2021, 31 , 2006495. J. Long, Z. Yang, F. Yang, J. Cuan and J. Wu, Electrochim. Acta , 2020, 344 , 136155. Wu, Y. Ding, L. Hu, X. Zhang, Y. Huang and S. Chen, Mater. Lett. , 2020, 277 , 128268. Z. Hu, Q. Liu, S. Chou and S. Dou, Adv. Mater. , 2017, 29 , 1700606. S. Li, Y. Liu, X. Zhao, K. Cui, Q. Shen, P. Li, X. Qu and L. Jiao, Angew. Chem., Int. Ed. , 2021, 60 , 20286–20293. T. Xiong, Y. Wang, B. Yin, W. Shi, W. S. V. Lee and J. Xue, Nano-Micro Lett. , 2020, 12 , 8. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狮子座完成签到,获得积分10
1秒前
3秒前
3秒前
3秒前
小树完成签到,获得积分10
4秒前
5秒前
英姑应助司马惜儿采纳,获得10
5秒前
香蕉觅云应助wanghuan采纳,获得10
7秒前
asd给顺利茹妖的求助进行了留言
7秒前
两仪发布了新的文献求助10
7秒前
8秒前
天语黑音发布了新的文献求助10
8秒前
8秒前
hserh发布了新的文献求助30
9秒前
荔枝关注了科研通微信公众号
12秒前
动听丹萱发布了新的文献求助30
12秒前
乐乐应助zmy采纳,获得10
13秒前
PENG应助昵称采纳,获得10
13秒前
善学以致用应助MoodMeed采纳,获得200
14秒前
小杜小杜发布了新的文献求助10
14秒前
田様应助北风歌采纳,获得10
16秒前
SYT完成签到,获得积分10
19秒前
aodilee发布了新的文献求助50
19秒前
shanshan123458完成签到 ,获得积分10
21秒前
KOP1892应助噗噗采纳,获得20
21秒前
健忘可愁发布了新的文献求助10
22秒前
23秒前
24秒前
hodge完成签到,获得积分10
25秒前
太多完成签到,获得积分10
26秒前
地学韦丰吉司长完成签到,获得积分10
27秒前
zmy发布了新的文献求助10
27秒前
重要忆秋完成签到,获得积分10
29秒前
lantywan完成签到,获得积分10
30秒前
迟大猫应助池寒采纳,获得10
34秒前
英姑应助两仪采纳,获得10
35秒前
JIE完成签到,获得积分10
35秒前
36秒前
成就的笑南完成签到 ,获得积分10
37秒前
沉默的冬寒完成签到 ,获得积分10
38秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3512440
求助须知:如何正确求助?哪些是违规求助? 3094848
关于积分的说明 9224928
捐赠科研通 2789670
什么是DOI,文献DOI怎么找? 1530807
邀请新用户注册赠送积分活动 711128
科研通“疑难数据库(出版商)”最低求助积分说明 706586