Enhancing gland segmentation in colon histology images using an instance-aware diffusion model

人工智能 计算机科学 分割 计算机视觉 模式识别(心理学) 图像分割 对象(语法) 管道(软件) Sørensen–骰子系数 尺度空间分割 掷骰子 数学 几何学 程序设计语言
作者
Mengxue Sun,Wei Wang,Qingtao Gong,Wenhui Huang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:166: 107527-107527 被引量:13
标识
DOI:10.1016/j.compbiomed.2023.107527
摘要

In pathological image analysis, determination of gland morphology in histology images of the colon is essential to determine the grade of colon cancer. However, manual segmentation of glands is extremely challenging and there is a need to develop automatic methods for segmenting gland instances. Recently, due to the powerful noise-to-image denoising pipeline, the diffusion model has become one of the hot spots in computer vision research and has been explored in the field of image segmentation. In this paper, we propose an instance segmentation method based on the diffusion model that can perform automatic gland instance segmentation. Firstly, we model the instance segmentation process for colon histology images as a denoising process based on a diffusion model. Secondly, to recover details lost during denoising, we use Instance Aware Filters and multi-scale Mask Branch to construct global mask instead of predicting only local masks. Thirdly, to improve the distinction between the object and the background, we apply Conditional Encoding to enhance the intermediate features with the original image encoding. To objectively validate the proposed method, we compared several state-of-the-art deep learning models on the 2015 MICCAI Gland Segmentation challenge (GlaS) dataset (165 images), the Colorectal Adenocarcinoma Glands (CRAG) dataset (213 images) and the RINGS dataset (1500 images). Our proposed method obtains significantly improved results for CRAG (Object F1 0.853 ± 0.054, Object Dice 0.906 ± 0.043), GlaS Test A (Object F1 0.941 ± 0.039, Object Dice 0.939 ± 0.060), GlaS Test B (Object F1 0.893 ± 0.073, Object Dice 0.889 ± 0.069), and RINGS dataset (Precision 0.893 ± 0.096, Dice 0.904 ± 0.091). The experimental results show that our method significantly improves the segmentation accuracy, and the experiment results demonstrate the efficacy of the method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科目三应助落寞的唯雪采纳,获得10
1秒前
Lucas应助深海鱼采纳,获得10
1秒前
2秒前
2秒前
爬得飞快的仲文博完成签到,获得积分10
2秒前
明理囧完成签到 ,获得积分10
2秒前
独孤骄子完成签到 ,获得积分0
3秒前
风趣妙柏发布了新的文献求助10
4秒前
5秒前
搞怪的语薇完成签到,获得积分10
5秒前
6秒前
123发布了新的文献求助10
6秒前
8秒前
单薄的夜南应助壮观的擎采纳,获得10
8秒前
闲花煮茶完成签到,获得积分10
8秒前
9秒前
彳亍完成签到,获得积分10
9秒前
9秒前
单薄的夜南应助尽如采纳,获得50
10秒前
脑洞疼应助yang采纳,获得30
10秒前
11秒前
11秒前
hjmsn发布了新的文献求助10
11秒前
WT发布了新的文献求助10
12秒前
12秒前
zou完成签到,获得积分10
12秒前
12秒前
夏日香气发布了新的文献求助10
12秒前
深海鱼发布了新的文献求助10
13秒前
wwwccc发布了新的文献求助10
14秒前
16秒前
chengwang发布了新的文献求助10
17秒前
hhh完成签到 ,获得积分10
18秒前
情怀应助小巧的烤鸡采纳,获得10
18秒前
英姑应助风趣妙柏采纳,获得10
18秒前
20秒前
hjmsn完成签到,获得积分10
20秒前
song发布了新的文献求助10
21秒前
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998144
求助须知:如何正确求助?哪些是违规求助? 3537656
关于积分的说明 11272231
捐赠科研通 3276814
什么是DOI,文献DOI怎么找? 1807126
邀请新用户注册赠送积分活动 883718
科研通“疑难数据库(出版商)”最低求助积分说明 810014