人工智能
计算机科学
分割
计算机视觉
模式识别(心理学)
图像分割
对象(语法)
管道(软件)
Sørensen–骰子系数
尺度空间分割
掷骰子
数学
几何学
程序设计语言
作者
Mengxue Sun,Wei Wang,Qingtao Gong,Wenhui Huang
标识
DOI:10.1016/j.compbiomed.2023.107527
摘要
In pathological image analysis, determination of gland morphology in histology images of the colon is essential to determine the grade of colon cancer. However, manual segmentation of glands is extremely challenging and there is a need to develop automatic methods for segmenting gland instances. Recently, due to the powerful noise-to-image denoising pipeline, the diffusion model has become one of the hot spots in computer vision research and has been explored in the field of image segmentation. In this paper, we propose an instance segmentation method based on the diffusion model that can perform automatic gland instance segmentation. Firstly, we model the instance segmentation process for colon histology images as a denoising process based on a diffusion model. Secondly, to recover details lost during denoising, we use Instance Aware Filters and multi-scale Mask Branch to construct global mask instead of predicting only local masks. Thirdly, to improve the distinction between the object and the background, we apply Conditional Encoding to enhance the intermediate features with the original image encoding. To objectively validate the proposed method, we compared several state-of-the-art deep learning models on the 2015 MICCAI Gland Segmentation challenge (GlaS) dataset (165 images), the Colorectal Adenocarcinoma Glands (CRAG) dataset (213 images) and the RINGS dataset (1500 images). Our proposed method obtains significantly improved results for CRAG (Object F1 0.853 ± 0.054, Object Dice 0.906 ± 0.043), GlaS Test A (Object F1 0.941 ± 0.039, Object Dice 0.939 ± 0.060), GlaS Test B (Object F1 0.893 ± 0.073, Object Dice 0.889 ± 0.069), and RINGS dataset (Precision 0.893 ± 0.096, Dice 0.904 ± 0.091). The experimental results show that our method significantly improves the segmentation accuracy, and the experiment results demonstrate the efficacy of the method.
科研通智能强力驱动
Strongly Powered by AbleSci AI