Enhancing gland segmentation in colon histology images using an instance-aware diffusion model

人工智能 计算机科学 分割 计算机视觉 模式识别(心理学) 图像分割 对象(语法) 管道(软件) Sørensen–骰子系数 尺度空间分割 掷骰子 数学 几何学 程序设计语言
作者
Mengxue Sun,Wei Wang,Qingtao Gong,Wenhui Huang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:166: 107527-107527 被引量:13
标识
DOI:10.1016/j.compbiomed.2023.107527
摘要

In pathological image analysis, determination of gland morphology in histology images of the colon is essential to determine the grade of colon cancer. However, manual segmentation of glands is extremely challenging and there is a need to develop automatic methods for segmenting gland instances. Recently, due to the powerful noise-to-image denoising pipeline, the diffusion model has become one of the hot spots in computer vision research and has been explored in the field of image segmentation. In this paper, we propose an instance segmentation method based on the diffusion model that can perform automatic gland instance segmentation. Firstly, we model the instance segmentation process for colon histology images as a denoising process based on a diffusion model. Secondly, to recover details lost during denoising, we use Instance Aware Filters and multi-scale Mask Branch to construct global mask instead of predicting only local masks. Thirdly, to improve the distinction between the object and the background, we apply Conditional Encoding to enhance the intermediate features with the original image encoding. To objectively validate the proposed method, we compared several state-of-the-art deep learning models on the 2015 MICCAI Gland Segmentation challenge (GlaS) dataset (165 images), the Colorectal Adenocarcinoma Glands (CRAG) dataset (213 images) and the RINGS dataset (1500 images). Our proposed method obtains significantly improved results for CRAG (Object F1 0.853 ± 0.054, Object Dice 0.906 ± 0.043), GlaS Test A (Object F1 0.941 ± 0.039, Object Dice 0.939 ± 0.060), GlaS Test B (Object F1 0.893 ± 0.073, Object Dice 0.889 ± 0.069), and RINGS dataset (Precision 0.893 ± 0.096, Dice 0.904 ± 0.091). The experimental results show that our method significantly improves the segmentation accuracy, and the experiment results demonstrate the efficacy of the method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
八大山人发布了新的文献求助10
1秒前
1秒前
还好还好完成签到,获得积分10
2秒前
慕青应助同尘采纳,获得10
5秒前
正正发布了新的文献求助10
6秒前
852发布了新的文献求助10
8秒前
9秒前
炙热发箍关注了科研通微信公众号
9秒前
wxy完成签到,获得积分20
9秒前
克利夫兰完成签到,获得积分10
10秒前
10秒前
13秒前
13秒前
14秒前
Ivan完成签到 ,获得积分10
14秒前
正正完成签到,获得积分10
16秒前
17秒前
19秒前
20秒前
zxx完成签到 ,获得积分10
21秒前
bxj完成签到 ,获得积分10
24秒前
任性唇膏发布了新的文献求助10
24秒前
26秒前
26秒前
852发布了新的文献求助20
27秒前
27秒前
乾乾发布了新的文献求助10
31秒前
曲悦发布了新的文献求助10
31秒前
31秒前
Dawn完成签到 ,获得积分10
31秒前
32秒前
任性唇膏完成签到,获得积分10
33秒前
34秒前
科研通AI2S应助谷歌采纳,获得10
34秒前
嗯哼应助加菲丰丰采纳,获得100
34秒前
安静的忆梅完成签到,获得积分10
35秒前
谦让万声发布了新的文献求助10
35秒前
36秒前
36秒前
Lvhao应助科研通管家采纳,获得10
37秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164337
求助须知:如何正确求助?哪些是违规求助? 2815164
关于积分的说明 7907823
捐赠科研通 2474743
什么是DOI,文献DOI怎么找? 1317626
科研通“疑难数据库(出版商)”最低求助积分说明 631898
版权声明 602234