Optimize the pore size-pore distribution-pore geometry-porosity of 3D-printed porous tantalum to obtain optimal critical bone defect repair capability

多孔性 材料科学 选择性激光熔化 生物医学工程 复合材料 微观结构 冶金 医学
作者
Xueying Wang,Dachen Zhang,Haitao Peng,Jingzhou Yang,Yan Li,Jianxia Xu
出处
期刊:Biomaterials advances 卷期号:154: 213638-213638 被引量:6
标识
DOI:10.1016/j.bioadv.2023.213638
摘要

The treatment and reconstruction of large or critical size bone defects is a challenging clinical problem. Additive manufacturing breaks the technical difficulties of preparing complex conformation and anatomically matched personalized porous tantalum implants, but the ideal pore structure for 3D-printed porous tantalum in critical bone defect repair applications remains unclear. Guiding appropriate bone tissue regeneration by regulating proper pore size-pore distribution-pore geometry-porosity is a challenge for its fabrication and application. We fabricated porous tantalum (PTa) scaffolds with six different combinations of pore structures using powder bed laser melting (L-PBF) technology. In vitro biological experiments were conducted to systematically investigate the effects of pore structure characteristics on osteoblast behaviors, showing that the bionic trabecular structure with both large and small poress facilitated cell permeation, proliferation and differentiation compared to the cubic structure with uniform pore sizes. The osteogenesis of PTa with different porosity of trabecular structures was further investigated by a rabbit condyle critical bone defect model. Synthetically, T70% up-regulated the expression of osteogenesis-related genes (ALP, COLI, OCN, RUNX-2) and showed the highest bone ingrowth area and bone contact rate in vivo after 16 weeks, with the best potential for critical bone defect repair. Our results suggested that the bionic trabecular structure with a pore size distribution of 200–1200 μm, an average pore size of 700 μm, and a porosity of 70 % is the best choice for repairing critical bone defects, which is expected to guide the clinical application of clinical 3D-printed PTa scaffolds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赢赢发布了新的文献求助10
刚刚
1秒前
尺素寸心完成签到,获得积分10
2秒前
3秒前
老实不尤完成签到,获得积分10
4秒前
CCL应助mammoth采纳,获得40
5秒前
6秒前
6秒前
7秒前
8秒前
盘尼西林给盘尼西林的求助进行了留言
8秒前
8秒前
香蕉觅云应助XXF采纳,获得10
8秒前
9秒前
大个应助招财不肥采纳,获得10
9秒前
xx发布了新的文献求助10
10秒前
joanna0932完成签到,获得积分10
10秒前
坚定亦竹完成签到,获得积分10
11秒前
mia完成签到,获得积分20
11秒前
11秒前
11秒前
CodeCraft应助zxx5012采纳,获得10
11秒前
13秒前
paparazzi221发布了新的文献求助10
13秒前
笑点低的大有完成签到 ,获得积分10
14秒前
孔小白发布了新的文献求助10
15秒前
15秒前
stephanie96发布了新的文献求助10
15秒前
Millie发布了新的文献求助10
16秒前
duxinyue应助sunzhiyu233采纳,获得10
16秒前
17秒前
喜悦夏之发布了新的文献求助10
18秒前
Chloe完成签到,获得积分10
18秒前
Kite完成签到,获得积分10
18秒前
JamesPei应助ZH的天方夜谭采纳,获得10
18秒前
晓峰完成签到,获得积分10
19秒前
xiao完成签到 ,获得积分10
19秒前
19秒前
21秒前
Ayu完成签到,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808