Analysis of traffic accident causes based on data augmentation and ensemble learning with high-dimensional small-sample data

计算机科学 一般化 特征选择 样品(材料) 集成学习 特征(语言学) 数据挖掘 机器学习 事故(哲学) 钥匙(锁) 变量(数学) 人工智能 随机森林 选择(遗传算法) 计算机安全 数学 化学 哲学 认识论 色谱法 数学分析 语言学
作者
Leipeng Zhu,Zhiqing Zhang,Dongdong Song,Biao Chen
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121782-121782 被引量:6
标识
DOI:10.1016/j.eswa.2023.121782
摘要

The causes analysis of road traffic accidents is often modelled based on high-dimensional small-sample data; however, such models often have low predictive accuracy and poor generalization performance. An analytical framework that considers both data augmentation and model optimization can enhance variable interpretation and predictive model performance, thereby improving the shortcomings of existing accident analysis methods. Our approach is as follows: 1) Starting with an analysis of the nature of road accidents, a symbolic operation is used to design a feature crosses algorithm. A random variable is added to construct a quantifiable feature selection algorithm, which can form a data augmentation method that conforms to the accident rules. 2) A highly reliable framework for analysing accident causes is constructed by using forward selection to optimize an ensemble learning model subset combined with feature crosses, feature selection and multiple-classification algorithms. A case study with accident data from a city in China shows that ensemble learning has the advantages of high predictive accuracy and strong generalization performance. It can accurately identify the key causes of accidents based on highly dimensional small-sample data. Driving behaviours such as lane changes and turns are the key causes of accidents. Giving drivers effective traffic environment information in a timely manner can significantly improve driving performance and reduce accident risk. This research provides a reference for the analysis of road accidents.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
Xiangyang完成签到,获得积分10
2秒前
3秒前
3秒前
e任思发布了新的文献求助10
3秒前
4秒前
英姑应助qi采纳,获得10
4秒前
Lny应助niko采纳,获得10
4秒前
5秒前
mmol发布了新的文献求助10
5秒前
yusheng发布了新的文献求助10
5秒前
熊啾啾发布了新的文献求助10
5秒前
坦率的匪发布了新的文献求助30
5秒前
Orange应助Amira采纳,获得10
6秒前
sanmumu完成签到,获得积分10
6秒前
纯真心情发布了新的文献求助10
6秒前
十一发布了新的文献求助10
6秒前
7秒前
研友_VZG7GZ应助泽丶采纳,获得10
7秒前
mwx应助SMU_mr_student采纳,获得10
7秒前
Mic应助明理的凌兰采纳,获得10
8秒前
今后应助李联洪采纳,获得10
8秒前
8秒前
billows发布了新的文献求助10
8秒前
9秒前
思源应助晓明拥抱世界采纳,获得10
9秒前
潇涯应助听闻墨笙采纳,获得20
9秒前
9秒前
科目三应助动听白秋采纳,获得10
10秒前
10秒前
天天快乐应助Xiangyang采纳,获得10
10秒前
念心发布了新的文献求助20
10秒前
星辰大海应助孤独的问凝采纳,获得10
11秒前
11秒前
玩命的囧发布了新的文献求助10
11秒前
阿凡达发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531486
求助须知:如何正确求助?哪些是违规求助? 4620295
关于积分的说明 14572638
捐赠科研通 4559928
什么是DOI,文献DOI怎么找? 2498650
邀请新用户注册赠送积分活动 1478588
关于科研通互助平台的介绍 1449980