Analysis of traffic accident causes based on data augmentation and ensemble learning with high-dimensional small-sample data

计算机科学 一般化 特征选择 样品(材料) 集成学习 特征(语言学) 数据挖掘 机器学习 事故(哲学) 钥匙(锁) 变量(数学) 人工智能 随机森林 选择(遗传算法) 计算机安全 数学 哲学 数学分析 化学 认识论 色谱法 语言学
作者
Leipeng Zhu,Zhiqing Zhang,Dongdong Song,Biao Chen
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121782-121782 被引量:6
标识
DOI:10.1016/j.eswa.2023.121782
摘要

The causes analysis of road traffic accidents is often modelled based on high-dimensional small-sample data; however, such models often have low predictive accuracy and poor generalization performance. An analytical framework that considers both data augmentation and model optimization can enhance variable interpretation and predictive model performance, thereby improving the shortcomings of existing accident analysis methods. Our approach is as follows: 1) Starting with an analysis of the nature of road accidents, a symbolic operation is used to design a feature crosses algorithm. A random variable is added to construct a quantifiable feature selection algorithm, which can form a data augmentation method that conforms to the accident rules. 2) A highly reliable framework for analysing accident causes is constructed by using forward selection to optimize an ensemble learning model subset combined with feature crosses, feature selection and multiple-classification algorithms. A case study with accident data from a city in China shows that ensemble learning has the advantages of high predictive accuracy and strong generalization performance. It can accurately identify the key causes of accidents based on highly dimensional small-sample data. Driving behaviours such as lane changes and turns are the key causes of accidents. Giving drivers effective traffic environment information in a timely manner can significantly improve driving performance and reduce accident risk. This research provides a reference for the analysis of road accidents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
湘华发布了新的文献求助10
1秒前
Jenny应助lan采纳,获得10
1秒前
单薄的飞松完成签到 ,获得积分10
1秒前
醒醒发布了新的文献求助10
1秒前
2秒前
恨安完成签到,获得积分10
2秒前
jijahui发布了新的文献求助30
2秒前
南瓜咸杏发布了新的文献求助30
2秒前
3秒前
调研昵称发布了新的文献求助50
3秒前
4秒前
白白不读书完成签到 ,获得积分10
4秒前
5秒前
AIA7发布了新的文献求助10
5秒前
5秒前
5秒前
夏橪完成签到,获得积分10
5秒前
5秒前
dddddd发布了新的文献求助10
6秒前
什么也难不倒我完成签到 ,获得积分10
6秒前
6秒前
立马毕业发布了新的文献求助10
6秒前
喜悦的尔阳完成签到,获得积分10
7秒前
7秒前
现实的白开水完成签到,获得积分10
7秒前
7秒前
SHDeathlock发布了新的文献求助50
7秒前
lunan发布了新的文献求助10
8秒前
8秒前
酷炫过客完成签到,获得积分20
8秒前
9秒前
10秒前
10秒前
华仔应助xiaoziyi666采纳,获得10
10秒前
渝州人完成签到,获得积分10
10秒前
10秒前
hanna发布了新的文献求助10
10秒前
科研通AI2S应助neil采纳,获得10
11秒前
大模型应助天真思雁采纳,获得10
11秒前
酷炫过客发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762