Analysis of traffic accident causes based on data augmentation and ensemble learning with high-dimensional small-sample data

计算机科学 一般化 特征选择 样品(材料) 集成学习 特征(语言学) 数据挖掘 机器学习 事故(哲学) 钥匙(锁) 变量(数学) 人工智能 随机森林 选择(遗传算法) 计算机安全 数学 化学 哲学 认识论 色谱法 数学分析 语言学
作者
Leipeng Zhu,Zhiqing Zhang,Dongdong Song,Biao Chen
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:237: 121782-121782 被引量:6
标识
DOI:10.1016/j.eswa.2023.121782
摘要

The causes analysis of road traffic accidents is often modelled based on high-dimensional small-sample data; however, such models often have low predictive accuracy and poor generalization performance. An analytical framework that considers both data augmentation and model optimization can enhance variable interpretation and predictive model performance, thereby improving the shortcomings of existing accident analysis methods. Our approach is as follows: 1) Starting with an analysis of the nature of road accidents, a symbolic operation is used to design a feature crosses algorithm. A random variable is added to construct a quantifiable feature selection algorithm, which can form a data augmentation method that conforms to the accident rules. 2) A highly reliable framework for analysing accident causes is constructed by using forward selection to optimize an ensemble learning model subset combined with feature crosses, feature selection and multiple-classification algorithms. A case study with accident data from a city in China shows that ensemble learning has the advantages of high predictive accuracy and strong generalization performance. It can accurately identify the key causes of accidents based on highly dimensional small-sample data. Driving behaviours such as lane changes and turns are the key causes of accidents. Giving drivers effective traffic environment information in a timely manner can significantly improve driving performance and reduce accident risk. This research provides a reference for the analysis of road accidents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
medlive2020完成签到,获得积分10
刚刚
txy完成签到,获得积分10
1秒前
老实续发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
3秒前
3秒前
medlive2020发布了新的文献求助10
4秒前
领导范儿应助小达采纳,获得10
4秒前
书于竹帛发布了新的文献求助10
4秒前
呱呱完成签到,获得积分10
5秒前
杜ss完成签到,获得积分20
5秒前
5秒前
yowgo完成签到,获得积分10
5秒前
cat发布了新的文献求助10
5秒前
武六七完成签到,获得积分10
5秒前
yznfly应助Ying采纳,获得30
6秒前
super完成签到,获得积分10
6秒前
6秒前
小蘑菇应助jjk采纳,获得10
7秒前
MZT完成签到,获得积分10
7秒前
雪白襄发布了新的文献求助20
7秒前
7秒前
9秒前
开心快乐123完成签到,获得积分10
10秒前
顾矜应助超级八宝粥采纳,获得10
10秒前
东郭雁梅完成签到,获得积分10
10秒前
灰哥的灰发布了新的文献求助10
10秒前
10秒前
yang发布了新的文献求助10
11秒前
11秒前
漂亮的不言完成签到 ,获得积分10
12秒前
芯止谭轩完成签到,获得积分10
12秒前
嚭嚭发布了新的文献求助10
13秒前
烟花应助顺心幻波采纳,获得10
14秒前
东郭雁梅发布了新的文献求助10
14秒前
难过的谷芹发布了新的文献求助100
15秒前
15秒前
小达发布了新的文献求助10
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961892
求助须知:如何正确求助?哪些是违规求助? 3508143
关于积分的说明 11139862
捐赠科研通 3240824
什么是DOI,文献DOI怎么找? 1791076
邀请新用户注册赠送积分活动 872725
科研通“疑难数据库(出版商)”最低求助积分说明 803344