Topic to Image: A Rumor Detection Method Inspired by Image Forgery Recognition Technology

谣言 计算机科学 人工智能 像素 卷积神经网络 图像(数学) 模式识别(心理学) 计算机视觉 政治学 公共关系
作者
Yucai Pang,Xuehong Li,Shihong Wei,Qian Li,Yunpeng Xiao
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (2): 2819-2832 被引量:4
标识
DOI:10.1109/tcss.2023.3302307
摘要

This article is inspired by image forgery recognition techniques. If we regard topic comments as image pixels, the whole topic is a complete image. The image differences between rumor topics and nonrumor topics are reflected in image pixels just like forged images, and then, the problem of detecting rumor topics can be regarded as the problem of recognition images of rumor topics. First, the Topic2Image algorithm is proposed to use the semantic information to quantify the adversarial intensity among comments. It is mapped to the topological relationship among user comments. Also, the relative positions of the comment nodes are determined by the adversarial intensity. Second, considering the competitive relationship between positive and negative comments, a sentimental mutual influence model is proposed. Based on the evolutionary game theory, a transfer matrix of sentimental mutual influence is constructed. Internal and external factors of rumor detection are considered at the individual and group levels, respectively. Finally, considering the advantages of convolutional neural network (CNN) for image processing, a simple rumor detection algorithm topic image rumor detection (TIRD) based on topic image classification is proposed. Using CNNs and gray-level co-occurrence matrix to extract global and local features of topic images and combining them with the transfer matrix of sentimental mutual influence, the detection of topic rumor is realized. Experiments demonstrate the feasibility of transforming topic rumors into image. In addition, the effectiveness of image forgery recognition technology for detecting rumors is verified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
季宇发布了新的文献求助10
刚刚
英俊的铭应助屁王采纳,获得10
刚刚
义气绿柳完成签到,获得积分10
刚刚
守望阳光1完成签到,获得积分10
1秒前
.....完成签到,获得积分20
1秒前
余云开完成签到 ,获得积分10
1秒前
wangn发布了新的文献求助10
1秒前
Gru发布了新的文献求助10
2秒前
2秒前
通~发布了新的文献求助10
2秒前
可爱的函函应助体贴啤酒采纳,获得10
3秒前
李健应助gaos采纳,获得10
3秒前
4秒前
zmy发布了新的文献求助10
4秒前
电脑桌完成签到,获得积分10
5秒前
汉堡包应助咿咿呀呀采纳,获得10
6秒前
科研通AI5应助大胆遥采纳,获得10
6秒前
6秒前
标致的安荷完成签到,获得积分10
7秒前
ABin完成签到,获得积分10
7秒前
跳跃难胜发布了新的文献求助10
7秒前
阳光的虔纹完成签到 ,获得积分10
7秒前
8秒前
番茄爱喝粥完成签到,获得积分10
8秒前
CipherSage应助老王爱学习采纳,获得10
8秒前
Fa完成签到,获得积分10
8秒前
9秒前
kira完成签到,获得积分10
10秒前
舒服的茹嫣完成签到,获得积分20
10秒前
Stvn发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
12秒前
明理的天蓝完成签到,获得积分10
12秒前
咳咳发布了新的文献求助10
12秒前
木叶研完成签到,获得积分10
12秒前
无花果应助通~采纳,获得10
12秒前
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740