已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Topic to Image: A Rumor Detection Method Inspired by Image Forgery Recognition Technology

谣言 计算机科学 人工智能 像素 卷积神经网络 图像(数学) 模式识别(心理学) 计算机视觉 政治学 公共关系
作者
Yucai Pang,Xuehong Li,Shihong Wei,Qian Li,Yunpeng Xiao
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (2): 2819-2832 被引量:4
标识
DOI:10.1109/tcss.2023.3302307
摘要

This article is inspired by image forgery recognition techniques. If we regard topic comments as image pixels, the whole topic is a complete image. The image differences between rumor topics and nonrumor topics are reflected in image pixels just like forged images, and then, the problem of detecting rumor topics can be regarded as the problem of recognition images of rumor topics. First, the Topic2Image algorithm is proposed to use the semantic information to quantify the adversarial intensity among comments. It is mapped to the topological relationship among user comments. Also, the relative positions of the comment nodes are determined by the adversarial intensity. Second, considering the competitive relationship between positive and negative comments, a sentimental mutual influence model is proposed. Based on the evolutionary game theory, a transfer matrix of sentimental mutual influence is constructed. Internal and external factors of rumor detection are considered at the individual and group levels, respectively. Finally, considering the advantages of convolutional neural network (CNN) for image processing, a simple rumor detection algorithm topic image rumor detection (TIRD) based on topic image classification is proposed. Using CNNs and gray-level co-occurrence matrix to extract global and local features of topic images and combining them with the transfer matrix of sentimental mutual influence, the detection of topic rumor is realized. Experiments demonstrate the feasibility of transforming topic rumors into image. In addition, the effectiveness of image forgery recognition technology for detecting rumors is verified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漂亮的爆米花关注了科研通微信公众号
刚刚
1秒前
心灵美的石头完成签到,获得积分10
1秒前
1秒前
2秒前
怡然的晓丝完成签到 ,获得积分10
4秒前
4秒前
wxq发布了新的文献求助10
5秒前
5秒前
7秒前
深情安青应助ppp采纳,获得10
9秒前
脑洞疼应助雍井采纳,获得10
10秒前
10秒前
anyig完成签到,获得积分10
10秒前
维维发布了新的文献求助10
11秒前
李健应助shinn采纳,获得10
11秒前
王晓静完成签到 ,获得积分10
12秒前
12秒前
collapsar1完成签到,获得积分10
12秒前
15秒前
小透明发布了新的文献求助10
15秒前
15秒前
坦率的文龙完成签到,获得积分10
17秒前
leave完成签到 ,获得积分10
18秒前
SciGPT应助并肩于雪山之巅采纳,获得10
18秒前
18秒前
ffff完成签到 ,获得积分10
19秒前
超越好帅发布了新的文献求助10
20秒前
要减肥发布了新的文献求助10
21秒前
大个应助小透明采纳,获得10
21秒前
21秒前
22秒前
pp‘s完成签到 ,获得积分10
22秒前
小蘑菇应助xny采纳,获得10
23秒前
小聖完成签到 ,获得积分10
24秒前
李金奥完成签到 ,获得积分10
25秒前
小马甲应助林lin采纳,获得10
27秒前
yu完成签到 ,获得积分10
28秒前
29秒前
yy完成签到 ,获得积分10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968181
求助须知:如何正确求助?哪些是违规求助? 3513189
关于积分的说明 11166755
捐赠科研通 3248411
什么是DOI,文献DOI怎么找? 1794243
邀请新用户注册赠送积分活动 874924
科研通“疑难数据库(出版商)”最低求助积分说明 804629