亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Topic to Image: A Rumor Detection Method Inspired by Image Forgery Recognition Technology

谣言 计算机科学 人工智能 像素 卷积神经网络 图像(数学) 模式识别(心理学) 计算机视觉 政治学 公共关系
作者
Yucai Pang,Xuehong Li,Shihong Wei,Qian Li,Yunpeng Xiao
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (2): 2819-2832 被引量:4
标识
DOI:10.1109/tcss.2023.3302307
摘要

This article is inspired by image forgery recognition techniques. If we regard topic comments as image pixels, the whole topic is a complete image. The image differences between rumor topics and nonrumor topics are reflected in image pixels just like forged images, and then, the problem of detecting rumor topics can be regarded as the problem of recognition images of rumor topics. First, the Topic2Image algorithm is proposed to use the semantic information to quantify the adversarial intensity among comments. It is mapped to the topological relationship among user comments. Also, the relative positions of the comment nodes are determined by the adversarial intensity. Second, considering the competitive relationship between positive and negative comments, a sentimental mutual influence model is proposed. Based on the evolutionary game theory, a transfer matrix of sentimental mutual influence is constructed. Internal and external factors of rumor detection are considered at the individual and group levels, respectively. Finally, considering the advantages of convolutional neural network (CNN) for image processing, a simple rumor detection algorithm topic image rumor detection (TIRD) based on topic image classification is proposed. Using CNNs and gray-level co-occurrence matrix to extract global and local features of topic images and combining them with the transfer matrix of sentimental mutual influence, the detection of topic rumor is realized. Experiments demonstrate the feasibility of transforming topic rumors into image. In addition, the effectiveness of image forgery recognition technology for detecting rumors is verified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ronald发布了新的文献求助10
38秒前
怕黑行恶完成签到,获得积分10
50秒前
53秒前
科研通AI2S应助Ronald采纳,获得10
1分钟前
1分钟前
1分钟前
怡然柚子完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Jim完成签到 ,获得积分10
1分钟前
2分钟前
俊逸鹏笑完成签到,获得积分10
2分钟前
3分钟前
4分钟前
万能图书馆应助Na采纳,获得10
4分钟前
4分钟前
HaoHao04完成签到 ,获得积分10
4分钟前
YY完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
小人物的坚持完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
6分钟前
7分钟前
7分钟前
7分钟前
7分钟前
8分钟前
8分钟前
8分钟前
8分钟前
8分钟前
8分钟前
Na发布了新的文献求助10
9分钟前
彭瓜瓜发布了新的文献求助10
9分钟前
ataybabdallah完成签到,获得积分10
9分钟前
小酸完成签到 ,获得积分10
9分钟前
9分钟前
今后应助Liayyy采纳,获得30
9分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Association Between Clozapine Exposure and Risk of Hematologic Malignancies in Veterans With Schizophrenia 850
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3298732
求助须知:如何正确求助?哪些是违规求助? 2933741
关于积分的说明 8464771
捐赠科研通 2606845
什么是DOI,文献DOI怎么找? 1423451
科研通“疑难数据库(出版商)”最低求助积分说明 661593
邀请新用户注册赠送积分活动 645188