基因敲除
生物
N6-甲基腺苷
细胞生物学
癌症研究
细胞生长
体内
结直肠癌
小干扰RNA
甲基化
信使核糖核酸
核糖核酸
癌症
细胞培养
甲基转移酶
生物化学
基因
遗传学
作者
Mujie Ye,Jinhao Chen,Feiyu Lu,Minghui Zhao,Suwen Wu,Chunhua Hu,Ping Yu,Jingbao Kan,Jian’an Bai,Ye Tian,Qiyun Tang
标识
DOI:10.1186/s13578-023-01100-9
摘要
Abstract Background N6-methyladenosine (m6A) modification is the most abundant reversible methylation modification in eukaryotes, and it is reportedly closely associated with a variety of cancers progression, including colorectal cancer (CRC). This study showed that activated lipid metabolism and glycolysis play vital roles in the occurrence and development of CRC. However, only a few studies have reported the biological mechanisms underlying this connection. Methods Protein and mRNA levels of FTO and ALKBH5 were measured using western blot and qRT-PCR. The effects of FTO and ALKBH5 on cell proliferation were examined using CCK-8, colony formation, and EdU assays, and the effects on cell migration and invasion were tested using a transwell assay. m6A RNA immunoprecipitation (MeRIP) and RNA-seq was used to explore downstream target gene. RIP was performed to verify the interaction between m6A and HK2. The function of FTO and ALKBH5 in vivo was determined by xenograft in nude mice. Results In this study, FTO and ALKBH5 were significantly down-regulated in CRC patients and cells both in vivo and in vitro in a high-fat environment. Moreover, FTO and ALKBH5 over-expression hampered cell proliferation both in vitro and in vivo. Conversely, FTO and ALKBH5 knockdown accelerated the malignant biological behaviors of CRC cells. The mechanism of action of FTO and ALKBH5 involves joint regulation of HK2, a key enzyme in glycolysis, which was identified by RNA sequencing and MeRIP-seq. Furthermore, reduced expression of FTO and ALKBH5 jointly activated the FOXO signaling pathway, which led to enhanced proliferation ability in CRC cells. IGF2BP2, as a m6A reader, positively regulated HK2 mRNA in m6A dependent manner. Additionally, down-regulation of FTO/ALKBH5 increased METTL3 and decreased METTL14 levels, further promoting CRC progression. Conclusion In conclusion, our study revealed the FTO-ALKBH5/IGF2BP2/HK2/FOXO1 axis as a mechanism of aberrant m6A modification and glycolysis regulation in CRC.
科研通智能强力驱动
Strongly Powered by AbleSci AI