FedSuper: A Byzantine-Robust Federated Learning Under Supervision

拜占庭式建筑 计算机科学 量子拜占庭协议 稳健性(进化) Byzantine容错 独立同分布随机变量 人工智能 编配 分布式计算 机器学习 数学 历史 视觉艺术 基因 随机变量 容错 统计 化学 生物化学 古代史 音乐剧 艺术
作者
Ping Zhao,Jin Hua Jiang,Guanglin Zhang
出处
期刊:ACM Transactions on Sensor Networks [Association for Computing Machinery]
标识
DOI:10.1145/3630099
摘要

Federated Learning (FL) is a machine learning setting where multiple worker devices collaboratively train a model under the orchestration of a central server, while keeping the training data local. However, owing to the lack of supervision on worker devices, FL is vulnerable to Byzantine attacks where the worker devices controlled by an adversary arbitrarily generate poisoned local models and send to FL server, ultimately degrading the utility (e.g., model accuracy) of the global model. Most of existing Byzantine-robust algorithms, however, cannot well react to the threatening Byzantine attacks when the ratio of compromised worker devices (i.e., Byzantine ratio) is over 0.5 and worker devices’ local training datasets are not independent and identically distributed (non-IID). We propose a novel Byzantine-robust Fed erated Learning under Super vision (FedSuper), which can maintain robustness against Byzantine attacks even in the threatening scenario with a very high Byzantine ratio (0.9 in our experiments) and the largest level of non-IID data (1.0 in our experiments) when the state-of-the-art Byzantine attacks are conducted. The main idea of FedSuper is that the FL server supervises worker devices via injecting a shadow dataset into their local training processes. Moreover, according to the local models’ accuracies or losses on the shadow dataset, we design a Local Model Filter to remove poisoned local models and output an optimal global model. Extensive experimental results on three real-world datasets demonstrate the effectiveness and the superior performance of FedSuper, compared to five latest Byzantine-robust FL algorithms and two baselines, in defending against two state-of-the-art Byzantine attacks with high Byzantine ratios and high levels of non-IID data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
南冥完成签到 ,获得积分10
4秒前
皇甫契完成签到,获得积分10
5秒前
负责的紫安完成签到 ,获得积分10
5秒前
CC关闭了CC文献求助
5秒前
5秒前
皇甫契发布了新的文献求助10
7秒前
Elaine完成签到,获得积分10
7秒前
奋斗的母鸡完成签到,获得积分20
8秒前
9秒前
落寞慕晴完成签到,获得积分10
10秒前
跑在颖发布了新的文献求助10
10秒前
10秒前
佳hia发布了新的文献求助10
11秒前
华仔应助笨笨含羞草采纳,获得10
12秒前
酷炫芝麻完成签到,获得积分10
13秒前
钙离子发布了新的文献求助10
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
静静小可爱完成签到,获得积分10
18秒前
18秒前
xxxxx发布了新的文献求助10
18秒前
Weiweiweixiao完成签到,获得积分10
18秒前
18秒前
18秒前
19秒前
19秒前
19秒前
辣目童子发布了新的文献求助10
19秒前
余铸海完成签到,获得积分10
19秒前
19秒前
19秒前
19秒前
19秒前
19秒前
19秒前
丘比特应助sljsb采纳,获得10
20秒前
20秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979916
求助须知:如何正确求助?哪些是违规求助? 3524030
关于积分的说明 11219577
捐赠科研通 3261464
什么是DOI,文献DOI怎么找? 1800674
邀请新用户注册赠送积分活动 879241
科研通“疑难数据库(出版商)”最低求助积分说明 807226