材料科学
化学工程
离子液体
电解质
电化学
结晶度
氧化物
锂(药物)
复合数
离子电导率
聚合物
电导率
复合材料
电极
化学
有机化学
物理化学
医学
工程类
冶金
内分泌学
催化作用
作者
Yanhua Zhang,Yuhang Mei,Xinglong Gao,Yumei Xiao,Zijun Tang,Xing Xiang,Jiadong Deng
标识
DOI:10.1016/j.jallcom.2023.172463
摘要
Polyethylene-oxide (PEO) based composite polymer electrolytes (CPEs) with one-dimensional sepiolite confined ionic liquids (ILs) structure is constructed to further improve Li+ conductivity and reduce cost. Silicon nanorods (SNRs) is obtained by microwave-assisted acid activation of sepiolite and then ILs is confined into SNRs by supercritical CO2 fluid. The specific surface area of SNRs reduces from 170.88 m2 g-1 to 2.19 m2 g-1 after ILs confining, and the morphology and component of ILs in SNRs channel are clearly detected, indicating that the SNRs confined ILs structure (ILs@SNRs) is successfully obtained. The Li+ conductivity of CPEs increases from 1.40 × 10-6 S cm-1 to 0.922 × 10-4 S cm-1, which indicates that ILs confined in SNRs provide a fast channel for Li+ transmission. Besides, the reduction of PEO crystallinity is also favorable to Li+ transmission. The corresponding lithium symmetrical battery and LiFePO4 battery has excellent electrochemical performances. The good rate performance is attributed to the high Li+ migration number of 0.261 compare to 0.122 of PEO. Compared with the simple mixing of polymer and ILs, the confined ILs in SNRs channel will not be lost, which maintains the stability of Li+ transmission and reduces the consumption amount of ILs thus greatly reducing the cost of CPEs.
科研通智能强力驱动
Strongly Powered by AbleSci AI