Enhanced Color Sensing and Recognition of Underwater Color Using Robust Adaptive Tone Mapping

水下 计算机科学 语调(文学) 人工智能 色调映射 计算机视觉 模式识别(心理学) 地质学 艺术 动态范围 海洋学 文学类 高动态范围
作者
Kuo‐Jui Hu,Mengyi Chen,Yuh-Shihng Chang,Sheng-Long Kao
出处
期刊:Sensors and Materials [MYU K.K.]
卷期号:35 (11): 3671-3671
标识
DOI:10.18494/sam4642
摘要

Sensing images in the underwater environment is a significant issue in ocean engineering.Acquiring clear underwater images involves many challenges, such as climate, environment, and human factors.The most important problems are the fogging effect caused by the dispersion of light and the energy of each light wavelength when it propagates in water.Then, a color cast is caused by inconsistent attenuation.A common issue is the dispersion of light that occurs in underwater photography, which can impact the overall color balance of an imager.While current research can make use of good approaches for obtaining good visual quality and quantitative indicators, having a wider color gamut space and a dynamic image range can improve visible details.Therefore, we propose a module for enhancing underwater color image sensing with robust adaptive tone mapping for inferring degradation models using deep learning models and with adaptive tone mapping for further improving the image dynamic range.We address issues with limited dynamic range and brightness in underwater image sensing and recognition using a robust adaptive tone mapping method.Quantitative and qualitative results show that our method performs relatively well in the Underwater Image Enhancement Benchmark dataset compared with other recent methods that apply appropriate tone mapping to the large-scale layers of the image to preserve details and avoid over-enhancement.Therefore, the color gamut of our augmented image has a large scale and is evenly distributed when visualized in the Y'CbCr color space.In the future, our research method is expected to be applied to different types of underwater work and environment, and to reduce the severe degradation problems that usually occur in underwater images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zhitong完成签到,获得积分10
刚刚
勤奋的蜗牛完成签到,获得积分20
3秒前
秋水完成签到 ,获得积分10
3秒前
彭于晏应助echoxq采纳,获得10
4秒前
4秒前
潇洒的诗桃完成签到,获得积分0
6秒前
海城好人完成签到,获得积分10
7秒前
Eve完成签到,获得积分10
9秒前
123完成签到,获得积分10
10秒前
garlic完成签到,获得积分10
12秒前
xhy完成签到,获得积分20
13秒前
13秒前
cannon8应助科研通管家采纳,获得20
15秒前
15秒前
15秒前
15秒前
港岛妹妹应助科研通管家采纳,获得10
15秒前
15秒前
xhy发布了新的文献求助10
16秒前
17秒前
19秒前
李虎完成签到 ,获得积分10
20秒前
KleinFC应助xsd采纳,获得10
21秒前
24秒前
25秒前
Billy应助小屋采纳,获得220
26秒前
风风完成签到 ,获得积分10
29秒前
30秒前
海丽完成签到 ,获得积分10
30秒前
bbpp完成签到,获得积分10
33秒前
充电宝应助XIN采纳,获得10
33秒前
mayberichard发布了新的文献求助10
35秒前
深情安青应助XuchaoD采纳,获得10
35秒前
36秒前
橘子完成签到,获得积分10
37秒前
梦晶箐妍完成签到,获得积分10
38秒前
1661完成签到,获得积分10
38秒前
39秒前
mayberichard完成签到,获得积分20
39秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262680
求助须知:如何正确求助?哪些是违规求助? 2903319
关于积分的说明 8324818
捐赠科研通 2573399
什么是DOI,文献DOI怎么找? 1398249
科研通“疑难数据库(出版商)”最低求助积分说明 654044
邀请新用户注册赠送积分活动 632642