Exploration of proteomic biomarkers and digital imaging analysis for Oryctes rhinoceros nudivirus infection

生物 九氟化硫 犀牛 病毒学 病毒复制 糖蛋白 幼虫 细胞生物学 分子生物学 病毒 遗传学 动物 基因 植物 夜蛾 重组DNA
作者
Se‐Young Cho,Bipin Vaidya,Hyukjung Kwon,Eunsun Kim,Youngsoon Kim,Ji Yeong Choi,Hyomin Seo,Joseph Sang‐Il Kwon,Duwoon Kim
出处
期刊:Entomological Research [Wiley]
卷期号:53 (11): 444-455
标识
DOI:10.1111/1748-5967.12676
摘要

Abstract Oryctes rhinoceros nudivirus (OrNV) infects the larval stage of many coleopteran insects; however, the underlying mechanisms and biomarkers of infection are not fully characterised. In this study, an optimal culture condition was developed for OrNV replication and proteomic biomarkers were identified using comparative proteomic analysis. The highest level of viral copy number was observed in Sf9 cells treated with 450 μM of H 2 O 2 and 2% foetal bovine serum (FBS). Among the 48 identified proteins, 14 proteins were significantly modulated in 2% FBS and H 2 O 2 ‐ treated OrNV‐infected cells (F2V) as compared with 10% FBS treated non‐infected cells (F10M). Network analysis revealed that SLC25A5, VDAC3, PHB2, and ANXA1 act as signature proteins for OrNV replication. Moreover, viral envelope glycoproteins, GRBNV_gp28‐like and GrBNV_gp62‐like proteins could be used as sensitive diagnostic signatures for OrNV infection. Furthermore, to conveniently identify the OrNV‐infection in Allomyrina dichotoma larvae, an image classification model was trained by Google Teachable Machine, which distinguished images with accuracy rates of 91% and 86% for infected and non‐infected larvae, respectively, at a learning rate of 0.001. This study demonstrated that Sf9 cell medium treated with 2% FBS and 450 μM H 2 O 2 is a permissible culture condition for OrNV replication. Proteomic signatures may be involved in the progression of viral infection. Additionally, a low‐cost and non‐invasive machine learning‐derived digital imaging analysis may improve the prediction of OrNV infection in larvae.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
onn完成签到,获得积分20
1秒前
ly发布了新的文献求助10
1秒前
2秒前
zhanghuan完成签到 ,获得积分10
2秒前
田南松发布了新的文献求助10
3秒前
3秒前
ONE完成签到,获得积分10
4秒前
4秒前
5秒前
jinxiao留下了新的社区评论
6秒前
雾失楼台发布了新的文献求助30
6秒前
onn发布了新的文献求助60
6秒前
火星上莛发布了新的文献求助10
6秒前
daiyu发布了新的文献求助10
9秒前
XZY发布了新的文献求助10
10秒前
慕青应助勤劳的乐天采纳,获得10
12秒前
桐桐应助蹬三轮的渣男采纳,获得10
13秒前
搜集达人应助240325采纳,获得10
14秒前
无敌娜完成签到,获得积分10
16秒前
感性的问晴完成签到,获得积分20
17秒前
不鸭完成签到 ,获得积分10
18秒前
张桓完成签到,获得积分10
18秒前
科研通AI2S应助QI采纳,获得10
19秒前
哪来什么可是完成签到,获得积分10
20秒前
飞天奶酪发布了新的文献求助10
20秒前
计时器响了完成签到,获得积分10
20秒前
22秒前
jimmy完成签到,获得积分10
23秒前
锦鲤完成签到 ,获得积分10
24秒前
24秒前
勤劳的小牛蛙完成签到,获得积分20
25秒前
科研通AI2S应助egg采纳,获得10
25秒前
寻道图强应助Hwt采纳,获得50
27秒前
27秒前
marco完成签到,获得积分10
27秒前
Lucille发布了新的文献求助10
28秒前
姽婳wy发布了新的文献求助10
29秒前
大模型应助笨笨chen采纳,获得10
29秒前
knight发布了新的文献求助10
32秒前
32秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Data Structures and Algorithms in Java 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268032
求助须知:如何正确求助?哪些是违规求助? 2907423
关于积分的说明 8342014
捐赠科研通 2578006
什么是DOI,文献DOI怎么找? 1401543
科研通“疑难数据库(出版商)”最低求助积分说明 655061
邀请新用户注册赠送积分活动 634140