海湾
河口
溶解有机碳
环境化学
营养物
环境科学
背景(考古学)
总有机碳
有机质
碳循环
湿地
海洋学
营养循环
生态学
生态系统
化学
地质学
古生物学
生物
作者
Chen Zhao,Haibo Zhang,Penghui Li,Yuanbi Yi,Yuping Zhou,Yuntao Wang,Chen He,Quan Shi,Ding He
标识
DOI:10.1016/j.scitotenv.2023.166843
摘要
As the widespread distributed and critical zones connecting the land and ocean systems, coastal bays are special units with semi-enclosed landforms to accommodate and process dissolved organic matter (DOM) in the context of increasing anthropogenic effects globally. However, compared to other common systems that have been paid much attention to (e.g., large river estuaries, wetlands), the roles of the coastal bays in coastal carbon cycling are less explored. To fill this knowledge gap, here we combined optical techniques and ultra-high-resolution mass spectrometry to systematically investigate the DOM chemistry of the three typical coastal bays in different nutrient levels, Xiangshan Bay, Jiaozhou Bay, and Sishili Bay, in China. Results show that terrestrial signals and anthropogenic imprints were observed in these three bays to various extents. Besides, Xiangshan Bay with a higher nutrient level had the DOM characterized by lower humification and aromaticity degree than Jiaozhou Bay and Sishili Bay, which not likely mainly resulted from the differences in the primary production or photochemical processing. Further examination reveals that microbial processing likely contributes to the differences in DOM chemistry among the three bays, as indicated by different proportions of potentially transformed nitrogen-containing molecules and relative abundances of the island of stability molecules. Considering the nutrient levels in different bays, we speculate that the lower nutrient concentrations would promote the efficiency of the microbial carbon pump (MCP), which hypothesized that heterotrophic microorganisms might contribute to the formation of marine recalcitrant organic carbon. Additionally, the enrichment of oxygen-rich compounds in the unique carboxyl-rich alicyclic molecule pool of Jiaozhou Bay and Sishili Bay suggests that the efficient MCP might preferentially form them in these two bays. This study emphasizes the importance of coordinating the land and ocean systems and controlling the nutrient discharge to coastal bays, thus, to potentially promote long-term marine carbon sequestration.
科研通智能强力驱动
Strongly Powered by AbleSci AI