膜蒸馏
膜
材料科学
海水淡化
润湿
化学工程
涂层
多孔性
蒸汽压
接触角
纳米技术
化学
复合材料
有机化学
工程类
生物化学
作者
Youmin Hou,Prexa Shah,Vassilios Constantoudis,Εvangelos Gogolides,Michael Kappl,Hans‐Jürgen Butt
标识
DOI:10.1038/s41467-023-42204-7
摘要
Abstract Membrane distillation (MD) is an emerging desalination technology that exploits phase change to separate water vapor from saline based on low-grade energy. As MD membranes come into contact with saline for days or weeks during desalination, membrane pores have to be sufficiently small (typically <0.2 µm) to avoid saline wetting into the membrane. However, in order to achieve high distillation flux, the pore size should be large enough to maximize transmembrane vapor transfer. These conflicting requirements of pore geometry pose a challenge to membrane design and currently hinder broader applications of MD. To address this fundamental challenge, we developed a super liquid-repellent membrane with hierarchical porous structures by coating a polysiloxane nanofilament network on a commercial micro-porous polyethersulfone membrane matrix. The fluorine-free nanofilament coating effectively prevents membrane wetting under high hydrostatic pressure (>11.5 bar) without compromising vapor transport. With large inner micro-porous structures, the nanofilament-coated membrane improves the distillation flux by up to 60% over the widely used commercially available membranes, while showing excellent salt rejection and operating stability. Our approach will allow the fabrication of high-performance composite membranes with multi-scale porous structures that have wide-ranging applications beyond desalination, such as in cleaning wastewater.
科研通智能强力驱动
Strongly Powered by AbleSci AI