清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multisource hierarchical neural network for knowledge graph embedding

计算机科学 嵌入 图形 数据挖掘 知识图 关系(数据库) 人工神经网络 多层感知器 人工智能 特征(语言学) 图嵌入 机器学习 模式识别(心理学) 理论计算机科学 语言学 哲学
作者
Dan Jiang,Ronggui Wang,Lixia Xue,Juan Yang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:237: 121446-121446 被引量:9
标识
DOI:10.1016/j.eswa.2023.121446
摘要

Link prediction for knowledge graphs aims to obtain missing nodes in triples. In recent years, link prediction methods have made specific achievements in knowledge graph embedding. However, knowledge graphs are characteristic of the heterogeneity of multiple types of entities and relations. A vital issue is efficiently extracting complex graph information and constructing a knowledge-semantic fusion of multiple features. To overcome these issues, a novel link prediction framework based on a multisource hierarchical neural network for knowledge graph embedding (MSHE) is proposed. In particular, mapping functions obtain entities and relations from low- to high-dimensional mapping sources. The combination of mapping sources and entity-relation sources constitutes multisource knowledge information, which facilitates the integration of complex heterogeneous entities and relations. Unlike training a single independent network, the hierarchical embedding network proposed in this paper accumulates feature information at multiple levels. Then, to fuse feature information, our Highway multilayer perceptron (MLP) inductively generates high-quality knowledge information. Through extensive experiments, MSHE's knowledge graph embedding outperformed the state-of-the-art baselines on FB15k-237 and YAGO3-10. Furthermore, MSHE achieves a Hits@10 score that is 3.8% and 2.7% higher than that of ComplexGCN on FB15K-237 and WN18RR, respectively. MSHE achieves a higher score in Hits@1 than DCN 10.0% in the dataset YAGO3-10. The experiments show that the MSHE achieved excellent results in the four datasets of comparative experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
香蕉觅云应助科研通管家采纳,获得10
21秒前
Owen应助科研通管家采纳,获得10
21秒前
海藏进星辰完成签到,获得积分10
35秒前
卷卷完成签到,获得积分10
39秒前
42秒前
ktw完成签到,获得积分10
43秒前
kmzzy完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
一条摆摆的沙丁鱼完成签到 ,获得积分10
4分钟前
4分钟前
yyf发布了新的文献求助10
4分钟前
claud完成签到 ,获得积分0
4分钟前
yyf完成签到,获得积分10
4分钟前
ffdhdh完成签到,获得积分10
4分钟前
白天科室黑奴and晚上实验室牛马完成签到 ,获得积分10
6分钟前
6分钟前
Akim应助亦风采纳,获得10
6分钟前
6分钟前
亦风发布了新的文献求助10
6分钟前
情怀应助刘紫媛采纳,获得10
6分钟前
科研通AI2S应助亦风采纳,获得10
6分钟前
亦风完成签到,获得积分10
6分钟前
7分钟前
偷得浮生半日闲完成签到 ,获得积分10
7分钟前
jintian完成签到 ,获得积分10
7分钟前
7分钟前
fufufu123完成签到 ,获得积分10
8分钟前
桐桐应助科研通管家采纳,获得10
8分钟前
puzhongjiMiQ完成签到,获得积分10
8分钟前
9分钟前
李健的粉丝团团长应助lzzz采纳,获得10
9分钟前
9分钟前
刘紫媛发布了新的文献求助10
9分钟前
Raul完成签到 ,获得积分10
10分钟前
lql完成签到 ,获得积分10
10分钟前
可爱的函函应助鲅鱼圈采纳,获得10
11分钟前
11分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990469
求助须知:如何正确求助?哪些是违规求助? 3532166
关于积分的说明 11256513
捐赠科研通 3271046
什么是DOI,文献DOI怎么找? 1805207
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234