Multisource hierarchical neural network for knowledge graph embedding

计算机科学 嵌入 图形 数据挖掘 知识图 关系(数据库) 人工神经网络 多层感知器 人工智能 特征(语言学) 图嵌入 机器学习 模式识别(心理学) 理论计算机科学 语言学 哲学
作者
Dan Jiang,Ronggui Wang,Lixia Xue,Juan Yang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:237: 121446-121446 被引量:9
标识
DOI:10.1016/j.eswa.2023.121446
摘要

Link prediction for knowledge graphs aims to obtain missing nodes in triples. In recent years, link prediction methods have made specific achievements in knowledge graph embedding. However, knowledge graphs are characteristic of the heterogeneity of multiple types of entities and relations. A vital issue is efficiently extracting complex graph information and constructing a knowledge-semantic fusion of multiple features. To overcome these issues, a novel link prediction framework based on a multisource hierarchical neural network for knowledge graph embedding (MSHE) is proposed. In particular, mapping functions obtain entities and relations from low- to high-dimensional mapping sources. The combination of mapping sources and entity-relation sources constitutes multisource knowledge information, which facilitates the integration of complex heterogeneous entities and relations. Unlike training a single independent network, the hierarchical embedding network proposed in this paper accumulates feature information at multiple levels. Then, to fuse feature information, our Highway multilayer perceptron (MLP) inductively generates high-quality knowledge information. Through extensive experiments, MSHE's knowledge graph embedding outperformed the state-of-the-art baselines on FB15k-237 and YAGO3-10. Furthermore, MSHE achieves a Hits@10 score that is 3.8% and 2.7% higher than that of ComplexGCN on FB15K-237 and WN18RR, respectively. MSHE achieves a higher score in Hits@1 than DCN 10.0% in the dataset YAGO3-10. The experiments show that the MSHE achieved excellent results in the four datasets of comparative experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13完成签到,获得积分10
刚刚
天天快乐应助岸部采纳,获得10
刚刚
yyy发布了新的文献求助10
1秒前
2秒前
李健应助lelelele采纳,获得10
2秒前
4秒前
4秒前
RESLR驳回了孙燕应助
4秒前
ysy发布了新的文献求助10
5秒前
小二郎应助momo采纳,获得10
5秒前
zzrs完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
陈红安发布了新的文献求助30
6秒前
6秒前
yyy完成签到,获得积分10
8秒前
小小aa16完成签到,获得积分10
8秒前
小呆荣发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
11秒前
幽默平安发布了新的文献求助10
11秒前
奋斗夏烟发布了新的文献求助10
13秒前
15秒前
ylh完成签到,获得积分10
17秒前
Owen应助幽默平安采纳,获得10
17秒前
乖猫要努力应助YJ888采纳,获得10
18秒前
18秒前
丘比特应助穆羊青采纳,获得10
19秒前
sasa完成签到,获得积分10
19秒前
sadascaqwqw发布了新的文献求助10
20秒前
20秒前
21秒前
21秒前
小宇子发布了新的文献求助10
22秒前
22秒前
锤子发布了新的文献求助25
23秒前
奋斗夏烟完成签到,获得积分10
23秒前
23秒前
zzrs发布了新的文献求助10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173