Investigation of spatiotemporal distribution and formation mechanisms of ozone pollution in eastern Chinese cities applying convolutional neural network

卷积神经网络 风速 臭氧 污染 污染物 分布(数学) 地面臭氧 环境科学 持续性 气象学 大气科学 地理 计算机科学 地质学 数学 生态学 生物 数学分析 机器学习
作者
Qiaoli Wang,Dongping Sheng,Chengzhi Wu,Xiaojie Ou,Shengdong Yao,Jingkai Zhao,Feili Li,Wei Li,Jianmeng Chen
出处
期刊:Journal of Environmental Sciences-china [Elsevier BV]
卷期号:148: 126-138 被引量:2
标识
DOI:10.1016/j.jes.2023.09.001
摘要

Severe ground-level ozone (O3) pollution over major Chinese cities has become one of the most challenging problems, which have deleterious effects on human health and the sustainability of society. This study explored the spatiotemporal distribution characteristics of ground-level O3 and its precursors based on conventional pollutant and meteorological monitoring data in Zhejiang Province from 2016 to 2021. Then, a high-performance convolutional neural network (CNN) model was established by expanding the moment and the concentration variations to general factors. Finally, the response mechanism of O3 to the variation with crucial influencing factors is explored by controlling variables and interpolating target variables. The results indicated that the annual average MDA8-90th concentrations in Zhejiang Province are higher in the northern and lower in the southern. When the wind direction (WD) ranges from east to southwest and the wind speed (WS) ranges between 2 and 3 m/sec, higher O3 concentration prone to occur. At different temperatures (T), the O3 concentration showed a trend of first increasing and subsequently decreasing with increasing NO2 concentration, peaks at the NO2 concentration around 0.02 mg/m3. The sensitivity of NO2 to O3 formation is not easily affected by temperature, barometric pressure and dew point temperature. Additionally, there is a minimum IRNO2 at each temperature when the NO2 concentration is 0.03 mg/m3, and this minimum IRNO2 decreases with increasing temperature. The study explores the response mechanism of O3 with the change of driving variables, which can provide a scientific foundation and methodological support for the targeted management of O3 pollution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小桔青山完成签到,获得积分10
2秒前
小蘑菇应助欣喜访枫采纳,获得10
2秒前
2秒前
2秒前
顺顺发布了新的文献求助20
2秒前
zbj完成签到,获得积分10
3秒前
3秒前
超级诺言发布了新的文献求助10
4秒前
4秒前
4秒前
认真的小鸽子完成签到,获得积分10
5秒前
满君清完成签到,获得积分10
6秒前
bkagyin应助aaa采纳,获得10
6秒前
7秒前
7秒前
7秒前
7秒前
祝愿完成签到,获得积分10
8秒前
cheng发布了新的文献求助10
8秒前
8秒前
唯梦发布了新的文献求助10
8秒前
脑洞疼应助小鱼儿采纳,获得10
9秒前
xiaoyu123发布了新的文献求助10
9秒前
浮游应助超级诺言采纳,获得10
10秒前
jarrykim完成签到,获得积分10
10秒前
小5完成签到,获得积分10
10秒前
11秒前
morelq完成签到,获得积分10
12秒前
关艺霖发布了新的文献求助10
12秒前
12秒前
Rui_Zhang发布了新的文献求助10
14秒前
14秒前
15秒前
17秒前
李健应助Jennyylz采纳,获得10
18秒前
xu发布了新的文献求助10
18秒前
927发布了新的文献求助10
18秒前
科目三应助科研苦行僧采纳,获得30
18秒前
星辰大海应助Xue采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934001
求助须知:如何正确求助?哪些是违规求助? 4202038
关于积分的说明 13055784
捐赠科研通 3976153
什么是DOI,文献DOI怎么找? 2178833
邀请新用户注册赠送积分活动 1195113
关于科研通互助平台的介绍 1106495