Investigation of spatiotemporal distribution and formation mechanisms of ozone pollution in eastern Chinese cities applying convolutional neural network

卷积神经网络 风速 臭氧 污染 污染物 分布(数学) 地面臭氧 环境科学 持续性 气象学 大气科学 地理 计算机科学 地质学 数学 生态学 生物 数学分析 机器学习
作者
Qiaoli Wang,Dongping Sheng,Chengzhi Wu,Xiaojie Ou,Shengdong Yao,Jingkai Zhao,Feili Li,Wei Li,Jianmeng Chen
出处
期刊:Journal of Environmental Sciences-china [Elsevier]
卷期号:148: 126-138 被引量:2
标识
DOI:10.1016/j.jes.2023.09.001
摘要

Severe ground-level ozone (O3) pollution over major Chinese cities has become one of the most challenging problems, which have deleterious effects on human health and the sustainability of society. This study explored the spatiotemporal distribution characteristics of ground-level O3 and its precursors based on conventional pollutant and meteorological monitoring data in Zhejiang Province from 2016 to 2021. Then, a high-performance convolutional neural network (CNN) model was established by expanding the moment and the concentration variations to general factors. Finally, the response mechanism of O3 to the variation with crucial influencing factors is explored by controlling variables and interpolating target variables. The results indicated that the annual average MDA8-90th concentrations in Zhejiang Province are higher in the northern and lower in the southern. When the wind direction (WD) ranges from east to southwest and the wind speed (WS) ranges between 2 and 3 m/sec, higher O3 concentration prone to occur. At different temperatures (T), the O3 concentration showed a trend of first increasing and subsequently decreasing with increasing NO2 concentration, peaks at the NO2 concentration around 0.02 mg/m3. The sensitivity of NO2 to O3 formation is not easily affected by temperature, barometric pressure and dew point temperature. Additionally, there is a minimum IRNO2 at each temperature when the NO2 concentration is 0.03 mg/m3, and this minimum IRNO2 decreases with increasing temperature. The study explores the response mechanism of O3 with the change of driving variables, which can provide a scientific foundation and methodological support for the targeted management of O3 pollution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
葡萄成熟应助ddak采纳,获得10
刚刚
勤奋大地完成签到,获得积分10
1秒前
1秒前
科研通AI2S应助布丁仔采纳,获得10
2秒前
机智的寒珊完成签到 ,获得积分10
6秒前
6秒前
舒适丹雪发布了新的文献求助30
6秒前
pupu发布了新的文献求助10
8秒前
8秒前
9秒前
彭于晏应助小广采纳,获得10
10秒前
Progie应助小木棉采纳,获得10
11秒前
11秒前
Progie应助谨慕轩采纳,获得10
11秒前
12秒前
善学以致用应助失眠的蓝采纳,获得10
12秒前
丰富的宛亦完成签到 ,获得积分10
12秒前
八戒完成签到 ,获得积分0
13秒前
Chai发布了新的文献求助20
14秒前
不配.应助Moonflower采纳,获得20
14秒前
15秒前
dhjskak完成签到,获得积分10
17秒前
17秒前
拼搏灵安完成签到 ,获得积分20
17秒前
小王完成签到,获得积分10
19秒前
20秒前
lunlunya完成签到,获得积分10
20秒前
21秒前
CodeCraft应助Mar采纳,获得10
21秒前
22秒前
111发布了新的文献求助10
24秒前
26秒前
27秒前
Mar完成签到,获得积分20
28秒前
小白发布了新的文献求助10
28秒前
稳重的若雁应助Chai采纳,获得10
29秒前
33秒前
34秒前
37秒前
38秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136281
求助须知:如何正确求助?哪些是违规求助? 2787312
关于积分的说明 7780828
捐赠科研通 2443293
什么是DOI,文献DOI怎么找? 1299081
科研通“疑难数据库(出版商)”最低求助积分说明 625325
版权声明 600905