Discounting and the portfolio of desires.

贴现 文件夹 经济 计量经济学 微观经济学 前景理论 金融经济学 财务
作者
Peter R. Killeen
出处
期刊:Psychological Review [American Psychological Association]
卷期号:130 (5): 1310-1325 被引量:5
标识
DOI:10.1037/rev0000447
摘要

The additive utility theory of discounting is extended to probability and commodity discounting. Because the utility of a good and the disutility of its delay combine additively, increases in the utility of a good offset the disutility of its delay: Increasing the former slows the apparent discount even with the latter, time-disutility, remaining invariant, giving the magnitude effect. Conjoint measurement showed the subjective value of money to be a logarithmic function of its amount, and subjective probability-the probability weighting function-to be Prelec's (1998). This general theory of discounting (GTD) explains why large amounts are probability discounted more quickly, giving the negative magnitude effect. Whatever enhances the value of a delayed asset, such as its ability to satisfy diverse desires, offsets its delay and reduces discounting. Money's liquidity permits optimization of the portfolio of desired goods, providing added value that accounts for its shallow temporal discount gradient. GTD predicts diversification effects for delay but none for probability discounting. Operations such as episodic future thinking that increase the larder of potential expenditures-the portfolio of desirable goods-increase the value of the asset, flattening the discount gradient. States that decrease the larder, such as stress, depression, and overweening focus on a single substance like a drug, constrict the portfolio, decreasing its utility and thereby steepening the gradient. GTD provides a unified account of delay, probability, and cross-commodity discounting. It explains the effects of motivational states, dispositions, and cognitive manipulations on discount gradients. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天学习发布了新的文献求助10
刚刚
刚刚
共享精神应助ALEXK采纳,获得10
2秒前
2秒前
哀伤发布了新的文献求助10
2秒前
英俊的铭应助liyiliyi117采纳,获得10
3秒前
29完成签到,获得积分10
3秒前
4秒前
4秒前
zhangshenrong完成签到 ,获得积分10
4秒前
吃皮发布了新的文献求助10
4秒前
4秒前
4秒前
玲子君完成签到,获得积分10
5秒前
5秒前
5秒前
孤辰关注了科研通微信公众号
5秒前
猴面包树发布了新的文献求助10
5秒前
打打应助科研通管家采纳,获得10
6秒前
nasa应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
6秒前
Ava应助科研通管家采纳,获得30
6秒前
6秒前
是谁还没睡完成签到 ,获得积分10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
SMZ应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
ShawnJohn应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
shoanofna应助科研通管家采纳,获得10
7秒前
zz完成签到,获得积分10
7秒前
泡泡应助科研通管家采纳,获得10
7秒前
7秒前
星辰大海应助科研通管家采纳,获得80
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5710497
求助须知:如何正确求助?哪些是违规求助? 5199402
关于积分的说明 15260984
捐赠科研通 4863101
什么是DOI,文献DOI怎么找? 2610419
邀请新用户注册赠送积分活动 1560773
关于科研通互助平台的介绍 1518409