15 Years of molecular simulation of drug-binding kinetics

动力学 受体-配体动力学 药物发现 分子动力学 药品 化学 计算生物学 计算化学 药理学 医学 生物 生物化学 物理 量子力学
作者
Chung F. Wong
出处
期刊:Expert Opinion on Drug Discovery [Informa]
卷期号:18 (12): 1333-1348 被引量:1
标识
DOI:10.1080/17460441.2023.2264770
摘要

ABSTRACTIntroduction Drug-binding kinetics has been increasingly recognized as an important factor to be considered in drug discovery. Long residence time could prolong the action of some drugs while produce toxicity on others. Early evaluation of the binding kinetics of drug candidates could reduce attrition rate late in the drug discovery process. Computational prediction of drug-binding kinetics is useful as compounds can be evaluated even before they are made. However, simulation of drug-binding kinetics is a challenging problem because of the long-time scale involved. Nevertheless, significant progress has been made.Areas covered This review illustrates the rapid evolution of qualitative to quantitative molecular dynamics-based methods that have been developed over the last 15 years.Expert opinion The development of new methods based on molecular dynamics simulations now enables computation of absolute association/dissociation rate constants. Cheaper methods capable of identifying candidates with fast or slow binding kinetics, or rank-ordering rate constants are also available. Together, these methods have generated useful insights into the molecular mechanisms of drug-binding kinetics, and the design of drug candidates with therapeutically favorable kinetics. Although predicting absolute rate constants is still expensive and challenging, rapid improvement is expected in the coming years with the continuing refinement of current technologies, development of new methodologies, and the utilization of machine learning.KEYWORDS: Drug-binding kineticsMarkov State Modelmetadynamics simulationmilestoning simulationscaled, steered, or random accelerated molecular dynamicsumbrella-sampling simulationweighted ensemble simulationmachine learning Article highlights Drug-binding kinetics has become an important factor for consideration in drug discovery.Molecular dynamics-based simulations have helped to decipher the molecular mechanisms of drug-binding kinetics and design compounds with therapeutically useful kinetic parameters.The last 15 years have seen significant progress in moving from qualitative to quantitative models. This review examines how a subset of methods have been used to study drug-binding kinetics. These methods include a mining-minima approach, steered molecular dynamics, τ-random accelerated molecular dynamics, scaled molecular dynamics, umbrella sampling simulation, Markov State Model, milestoning simulation, weighted ensemble simulation, and metadynamics simulation. Some of these methods allow absolute, not only relative, association/dissociation rates to be computed.Machine learning has been used with molecular dynamics to improve the study of drug-binding kinetics.Because it is still expensive to compute absolute association/dissociation rates, the number of systems studied is still small. However, the increase in the number of research groups tackling this problem should help to validate methodologies at a more rapid pace.AcknowledgmentsThe author thanks Cynthia Jobe for her assistance with English editing.Declaration of interestThe author has no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.Reviewer disclosuresPeer reviewers on this manuscript have no relevant financial or other relationships to disclose.Additional informationFundingThis author is supported by the US National Institutes of Health via grant [CA224033].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
臭菊发布了新的文献求助10
1秒前
1秒前
Mia发布了新的文献求助10
2秒前
源源发布了新的文献求助10
2秒前
xuweitai发布了新的文献求助10
2秒前
李健的粉丝团团长应助wyy采纳,获得10
3秒前
可靠馒头完成签到,获得积分10
3秒前
王雪发布了新的文献求助10
3秒前
Swallow完成签到,获得积分10
4秒前
Jasper应助112233采纳,获得10
4秒前
Lazarus_x发布了新的文献求助10
4秒前
靓丽的战斗机完成签到,获得积分10
5秒前
5秒前
萝丝园发布了新的文献求助10
5秒前
小玲发布了新的文献求助10
5秒前
fyl发布了新的文献求助10
6秒前
qunli发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
55发布了新的文献求助10
8秒前
十里完成签到,获得积分20
9秒前
ZYao65发布了新的文献求助10
9秒前
随风飘扬完成签到,获得积分10
9秒前
10秒前
在水一方应助东dong采纳,获得10
10秒前
在水一方应助Sherlockkkkk采纳,获得10
10秒前
今后应助lizzie采纳,获得10
11秒前
Jasper应助只菌采纳,获得10
11秒前
科研通AI2S应助波西米亚采纳,获得10
12秒前
充电宝应助可乐采纳,获得10
12秒前
怡然尔芙完成签到,获得积分10
13秒前
14秒前
千寻一醉完成签到,获得积分10
14秒前
Mia完成签到,获得积分10
14秒前
Augusterny发布了新的文献求助10
15秒前
LZM完成签到,获得积分10
15秒前
窝窝头应助逆鳞采纳,获得10
15秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123986
求助须知:如何正确求助?哪些是违规求助? 2774419
关于积分的说明 7722418
捐赠科研通 2429958
什么是DOI,文献DOI怎么找? 1290833
科研通“疑难数据库(出版商)”最低求助积分说明 621957
版权声明 600283