15 Years of molecular simulation of drug-binding kinetics

动力学 受体-配体动力学 药物发现 分子动力学 药品 化学 计算生物学 计算化学 药理学 医学 生物 生物化学 物理 量子力学
作者
Chung F. Wong
出处
期刊:Expert Opinion on Drug Discovery [Taylor & Francis]
卷期号:18 (12): 1333-1348 被引量:3
标识
DOI:10.1080/17460441.2023.2264770
摘要

ABSTRACTIntroduction Drug-binding kinetics has been increasingly recognized as an important factor to be considered in drug discovery. Long residence time could prolong the action of some drugs while produce toxicity on others. Early evaluation of the binding kinetics of drug candidates could reduce attrition rate late in the drug discovery process. Computational prediction of drug-binding kinetics is useful as compounds can be evaluated even before they are made. However, simulation of drug-binding kinetics is a challenging problem because of the long-time scale involved. Nevertheless, significant progress has been made.Areas covered This review illustrates the rapid evolution of qualitative to quantitative molecular dynamics-based methods that have been developed over the last 15 years.Expert opinion The development of new methods based on molecular dynamics simulations now enables computation of absolute association/dissociation rate constants. Cheaper methods capable of identifying candidates with fast or slow binding kinetics, or rank-ordering rate constants are also available. Together, these methods have generated useful insights into the molecular mechanisms of drug-binding kinetics, and the design of drug candidates with therapeutically favorable kinetics. Although predicting absolute rate constants is still expensive and challenging, rapid improvement is expected in the coming years with the continuing refinement of current technologies, development of new methodologies, and the utilization of machine learning.KEYWORDS: Drug-binding kineticsMarkov State Modelmetadynamics simulationmilestoning simulationscaled, steered, or random accelerated molecular dynamicsumbrella-sampling simulationweighted ensemble simulationmachine learning Article highlights Drug-binding kinetics has become an important factor for consideration in drug discovery.Molecular dynamics-based simulations have helped to decipher the molecular mechanisms of drug-binding kinetics and design compounds with therapeutically useful kinetic parameters.The last 15 years have seen significant progress in moving from qualitative to quantitative models. This review examines how a subset of methods have been used to study drug-binding kinetics. These methods include a mining-minima approach, steered molecular dynamics, τ-random accelerated molecular dynamics, scaled molecular dynamics, umbrella sampling simulation, Markov State Model, milestoning simulation, weighted ensemble simulation, and metadynamics simulation. Some of these methods allow absolute, not only relative, association/dissociation rates to be computed.Machine learning has been used with molecular dynamics to improve the study of drug-binding kinetics.Because it is still expensive to compute absolute association/dissociation rates, the number of systems studied is still small. However, the increase in the number of research groups tackling this problem should help to validate methodologies at a more rapid pace.AcknowledgmentsThe author thanks Cynthia Jobe for her assistance with English editing.Declaration of interestThe author has no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.Reviewer disclosuresPeer reviewers on this manuscript have no relevant financial or other relationships to disclose.Additional informationFundingThis author is supported by the US National Institutes of Health via grant [CA224033].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Xiaoli完成签到,获得积分10
刚刚
嘟嘟发布了新的文献求助10
刚刚
华仔应助Gotyababy采纳,获得10
1秒前
Z可发布了新的文献求助10
1秒前
菲菲呀发布了新的文献求助10
1秒前
1秒前
西西西贝发布了新的文献求助10
2秒前
ding应助爬不起来采纳,获得10
2秒前
2秒前
星辰大海应助三水采纳,获得50
2秒前
2秒前
我爱科研发布了新的文献求助10
2秒前
3秒前
爆米花应助失眠的月光采纳,获得30
3秒前
3秒前
早中晚发布了新的文献求助30
3秒前
wanci应助尼古拉耶维奇采纳,获得10
4秒前
Hsu关闭了Hsu文献求助
4秒前
5秒前
tdtk发布了新的文献求助30
5秒前
5秒前
springlrt完成签到,获得积分10
6秒前
JayeChen完成签到,获得积分10
6秒前
释然zc发布了新的文献求助10
7秒前
俊秀的芫完成签到,获得积分10
7秒前
7秒前
cach完成签到,获得积分10
7秒前
ruochenzu发布了新的文献求助10
7秒前
麦克完成签到,获得积分10
8秒前
紫萱完成签到,获得积分10
8秒前
现实的向梦完成签到,获得积分10
8秒前
8秒前
LL发布了新的文献求助10
8秒前
Rona完成签到,获得积分10
9秒前
丸子完成签到 ,获得积分10
9秒前
9秒前
月光完成签到 ,获得积分10
9秒前
彳亍完成签到,获得积分10
10秒前
kandie完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604564
求助须知:如何正确求助?哪些是违规求助? 4012871
关于积分的说明 12425263
捐赠科研通 3693482
什么是DOI,文献DOI怎么找? 2036342
邀请新用户注册赠送积分活动 1069364
科研通“疑难数据库(出版商)”最低求助积分说明 953871