15 Years of molecular simulation of drug-binding kinetics

动力学 受体-配体动力学 药物发现 分子动力学 药品 化学 计算生物学 计算化学 药理学 医学 生物 生物化学 物理 量子力学
作者
Chung F. Wong
出处
期刊:Expert Opinion on Drug Discovery [Taylor & Francis]
卷期号:18 (12): 1333-1348 被引量:3
标识
DOI:10.1080/17460441.2023.2264770
摘要

ABSTRACTIntroduction Drug-binding kinetics has been increasingly recognized as an important factor to be considered in drug discovery. Long residence time could prolong the action of some drugs while produce toxicity on others. Early evaluation of the binding kinetics of drug candidates could reduce attrition rate late in the drug discovery process. Computational prediction of drug-binding kinetics is useful as compounds can be evaluated even before they are made. However, simulation of drug-binding kinetics is a challenging problem because of the long-time scale involved. Nevertheless, significant progress has been made.Areas covered This review illustrates the rapid evolution of qualitative to quantitative molecular dynamics-based methods that have been developed over the last 15 years.Expert opinion The development of new methods based on molecular dynamics simulations now enables computation of absolute association/dissociation rate constants. Cheaper methods capable of identifying candidates with fast or slow binding kinetics, or rank-ordering rate constants are also available. Together, these methods have generated useful insights into the molecular mechanisms of drug-binding kinetics, and the design of drug candidates with therapeutically favorable kinetics. Although predicting absolute rate constants is still expensive and challenging, rapid improvement is expected in the coming years with the continuing refinement of current technologies, development of new methodologies, and the utilization of machine learning.KEYWORDS: Drug-binding kineticsMarkov State Modelmetadynamics simulationmilestoning simulationscaled, steered, or random accelerated molecular dynamicsumbrella-sampling simulationweighted ensemble simulationmachine learning Article highlights Drug-binding kinetics has become an important factor for consideration in drug discovery.Molecular dynamics-based simulations have helped to decipher the molecular mechanisms of drug-binding kinetics and design compounds with therapeutically useful kinetic parameters.The last 15 years have seen significant progress in moving from qualitative to quantitative models. This review examines how a subset of methods have been used to study drug-binding kinetics. These methods include a mining-minima approach, steered molecular dynamics, τ-random accelerated molecular dynamics, scaled molecular dynamics, umbrella sampling simulation, Markov State Model, milestoning simulation, weighted ensemble simulation, and metadynamics simulation. Some of these methods allow absolute, not only relative, association/dissociation rates to be computed.Machine learning has been used with molecular dynamics to improve the study of drug-binding kinetics.Because it is still expensive to compute absolute association/dissociation rates, the number of systems studied is still small. However, the increase in the number of research groups tackling this problem should help to validate methodologies at a more rapid pace.AcknowledgmentsThe author thanks Cynthia Jobe for her assistance with English editing.Declaration of interestThe author has no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.Reviewer disclosuresPeer reviewers on this manuscript have no relevant financial or other relationships to disclose.Additional informationFundingThis author is supported by the US National Institutes of Health via grant [CA224033].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
还行吧完成签到 ,获得积分10
1秒前
2秒前
lgb完成签到,获得积分10
3秒前
3秒前
5秒前
5秒前
5秒前
6秒前
6秒前
7秒前
复杂的箴完成签到,获得积分10
7秒前
8秒前
9秒前
zzzy完成签到,获得积分10
9秒前
9秒前
jerry完成签到,获得积分10
11秒前
抛物线完成签到,获得积分20
13秒前
英勇代荷发布了新的文献求助10
14秒前
14秒前
lyc发布了新的文献求助10
14秒前
木湾发布了新的文献求助10
14秒前
14秒前
英俊的铭应助球球采纳,获得10
16秒前
March应助深海大菠萝采纳,获得10
17秒前
熊22完成签到,获得积分20
17秒前
和谐幻丝完成签到,获得积分10
17秒前
充电宝应助兴奋的青筠采纳,获得10
17秒前
Marvin发布了新的文献求助10
18秒前
20秒前
坚强慕蕊完成签到 ,获得积分20
21秒前
英俊的铭应助大胆老头采纳,获得10
21秒前
21秒前
带志发布了新的文献求助10
21秒前
kp完成签到,获得积分10
22秒前
23秒前
24秒前
麦子完成签到,获得积分10
24秒前
xi发布了新的文献求助10
25秒前
25秒前
Greta发布了新的文献求助100
26秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979916
求助须知:如何正确求助?哪些是违规求助? 3524030
关于积分的说明 11219577
捐赠科研通 3261464
什么是DOI,文献DOI怎么找? 1800674
邀请新用户注册赠送积分活动 879241
科研通“疑难数据库(出版商)”最低求助积分说明 807226