Multi-Resolution LSTM-Based Prediction Model for Remaining Useful Life of Aero-Engine

预言 航空发动机 均方误差 代表(政治) 还原(数学) 可靠性(半导体) 计算机科学 期限(时间) 图层(电子) 人工智能 数据挖掘 模式识别(心理学) 可靠性工程 工程类 数学 统计 机械工程 功率(物理) 物理 几何学 化学 有机化学 量子力学 政治 法学 政治学
作者
Tiantian Xu,Guangjie Han,Hongbo Zhu,Tarik Taleb,Jinlin Peng
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (2): 1931-1941 被引量:11
标识
DOI:10.1109/tvt.2023.3319377
摘要

Aircraft is an important means of travel and the most convenient and fast vehicle in long-distance transportation. The aircraft engine is one of the most critical parts of an aircraft, and its reliability and safety are extremely important. In this paper, we consider that the operating conditions of aero-engines are complex and changeable, and a multi-resolution long short-term memory (MR-LSTM) model is proposed. The model can effectively predict the remaining useful life (RUL) of an aero-engine, which is a priority issue within the Prognostics and Health Management (PHM) framework - and thus it can support maintenance decisions. Sequences with multiple temporal resolutions are generated by a reconstruction of the decomposed wavelets. A two-layer LSTM model is then designed: 1) the first layer LSTM is used to learn attention at different time resolutions as well as to generate an integrated historical representation; 2) the second layer LSTM is used to learn the long and short-term time dependencies in the integrated historical representation. Experimental evaluations using the C-MAPSS datasets (FD002 and FD004) and the N-CMAPSS dataset showed that compared to other state-of-the-art RUL prediction methods, the FD002 sub-dataset showed a 12.1% reduction in RMSE and a 3.8% reduction in Score; the FD004 sub-dataset showed a 21.8% reduction in RMSE and a decreased by 62.1%; the RMSE of the N-CMAPSS dataset decreased by at most 25.8%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱撒娇的砖头完成签到,获得积分10
刚刚
wxy发布了新的文献求助10
2秒前
丘比特应助shinn采纳,获得10
2秒前
3秒前
布丁完成签到,获得积分10
4秒前
爆米花应助tao采纳,获得10
4秒前
小小小何完成签到 ,获得积分10
5秒前
一二三完成签到,获得积分20
6秒前
wxy完成签到,获得积分10
9秒前
9秒前
9秒前
w934420513完成签到 ,获得积分0
11秒前
Jeffny关注了科研通微信公众号
12秒前
完美世界应助liupidanqiu采纳,获得10
12秒前
充电宝应助汎影采纳,获得10
13秒前
wy.he应助cessy采纳,获得10
14秒前
shinn发布了新的文献求助10
15秒前
忧虑的羊发布了新的文献求助10
16秒前
欢呼阁完成签到,获得积分0
18秒前
19秒前
20秒前
汉堡包应助shinn采纳,获得10
23秒前
23秒前
vlots应助开朗安筠采纳,获得30
23秒前
小蘑菇应助欢呼阁采纳,获得10
23秒前
研友_VZG7GZ应助chenling采纳,获得10
23秒前
liupidanqiu发布了新的文献求助10
24秒前
科研通AI2S应助汎影采纳,获得10
24秒前
一二三发布了新的文献求助10
24秒前
饱满雅寒发布了新的文献求助10
26秒前
Jeffny发布了新的文献求助30
29秒前
liupidanqiu完成签到,获得积分10
29秒前
30秒前
31秒前
李健的粉丝团团长应助Cq采纳,获得30
31秒前
31秒前
32秒前
Youngen发布了新的文献求助10
32秒前
沫笙完成签到,获得积分10
33秒前
33秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3964636
求助须知:如何正确求助?哪些是违规求助? 3510142
关于积分的说明 11151749
捐赠科研通 3244291
什么是DOI,文献DOI怎么找? 1792365
邀请新用户注册赠送积分活动 873781
科研通“疑难数据库(出版商)”最低求助积分说明 803955