Data Reconstruction via Consensus Graph Learning for Effective Anomaly Detection in Industrial IoT

异常检测 计算机科学 图形 数据挖掘 投影(关系代数) 异常(物理) 维数之咒 数据建模 人工智能 算法 理论计算机科学 物理 数据库 凝聚态物理
作者
Lin Li,Hongchun Qu,Zhaoni Li,Jian Zheng,Xiaoming Tang,Ping Liu
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 3996-4006 被引量:2
标识
DOI:10.1109/tii.2023.3316220
摘要

In the industrial Internet of Things (IIoT), anomaly detection is fundamental to ensuring system safety and product quality, among other things. However, the massive amount of unlabeled, high-dimensional data generated in the IIoT challenges some existing anomaly detection methods as follows: 1) the distance concentration caused by the high dimensionality of the data can cause a decrease in the detection accuracy of some of the methods; and 2) some of the methods fail to explore the intrinsic relationships between the data, resulting in less effective detection of anomalies in the data. To handle the above challenges, a framework named data reconstruction via consensus graph learning (DRCG) and two anomaly score functions are proposed. Specifically, DRCG overcomes the distance concentration problem and explores the intrinsic relationships of the data by integrating projection learning, low-dimensional embedding, and consensus graph learning into a unified objective function. Then, an iterative algorithm is designed to solve the DRCG model. By doing so, DRCG not only drives the reconstruction error of abnormal samples higher than that of normal samples, but also obtains the projection that can effectively extract the intrinsic relationship between the data. Furthermore, to identify anomalies in the data, two anomaly score functions based on the reconstruction error and projection are designed, respectively. To achieve online anomaly detection for streaming data, DRCG with the projection-based anomaly score function is extended into an online version. The effectiveness and superiority of the proposed methods have been demonstrated on four real-world datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
jeff完成签到,获得积分10
3秒前
59关闭了59文献求助
3秒前
可耐的嫣娆完成签到,获得积分10
7秒前
无花果应助hzz采纳,获得10
7秒前
音悦台发布了新的文献求助30
8秒前
11秒前
threewei完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
清欢完成签到 ,获得积分10
13秒前
14秒前
xixun关注了科研通微信公众号
14秒前
15秒前
15秒前
解语花发布了新的文献求助50
16秒前
啊啊啊完成签到,获得积分10
17秒前
小琛完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
21秒前
21秒前
36038138完成签到 ,获得积分10
23秒前
XRenaissance发布了新的文献求助10
24秒前
搬砖发布了新的文献求助10
25秒前
25秒前
酱紫完成签到 ,获得积分10
25秒前
淡定妙海发布了新的文献求助10
25秒前
NexusExplorer应助盖世汤圆采纳,获得20
26秒前
26秒前
Azyyyy完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助30
27秒前
27秒前
陈昇发布了新的文献求助10
27秒前
cccf发布了新的文献求助100
28秒前
29秒前
冯俊驰发布了新的文献求助10
30秒前
海马成长痛完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950785
求助须知:如何正确求助?哪些是违规求助? 4213480
关于积分的说明 13104665
捐赠科研通 3995409
什么是DOI,文献DOI怎么找? 2186899
邀请新用户注册赠送积分活动 1202125
关于科研通互助平台的介绍 1115408