Data Reconstruction via Consensus Graph Learning for Effective Anomaly Detection in Industrial IoT

异常检测 计算机科学 图形 数据挖掘 投影(关系代数) 异常(物理) 维数之咒 数据建模 人工智能 算法 理论计算机科学 物理 数据库 凝聚态物理
作者
Lin Li,Hongchun Qu,Zhaoni Li,Jian Zheng,Xiaoming Tang,Ping Liu
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 3996-4006 被引量:2
标识
DOI:10.1109/tii.2023.3316220
摘要

In the industrial Internet of Things (IIoT), anomaly detection is fundamental to ensuring system safety and product quality, among other things. However, the massive amount of unlabeled, high-dimensional data generated in the IIoT challenges some existing anomaly detection methods as follows: 1) the distance concentration caused by the high dimensionality of the data can cause a decrease in the detection accuracy of some of the methods; and 2) some of the methods fail to explore the intrinsic relationships between the data, resulting in less effective detection of anomalies in the data. To handle the above challenges, a framework named data reconstruction via consensus graph learning (DRCG) and two anomaly score functions are proposed. Specifically, DRCG overcomes the distance concentration problem and explores the intrinsic relationships of the data by integrating projection learning, low-dimensional embedding, and consensus graph learning into a unified objective function. Then, an iterative algorithm is designed to solve the DRCG model. By doing so, DRCG not only drives the reconstruction error of abnormal samples higher than that of normal samples, but also obtains the projection that can effectively extract the intrinsic relationship between the data. Furthermore, to identify anomalies in the data, two anomaly score functions based on the reconstruction error and projection are designed, respectively. To achieve online anomaly detection for streaming data, DRCG with the projection-based anomaly score function is extended into an online version. The effectiveness and superiority of the proposed methods have been demonstrated on four real-world datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wms发布了新的文献求助10
刚刚
吴吴完成签到 ,获得积分10
1秒前
Hzhe发布了新的文献求助10
2秒前
2233酒完成签到,获得积分10
2秒前
正版DY发布了新的文献求助10
2秒前
勤劳滑板发布了新的文献求助10
3秒前
wzr完成签到,获得积分10
4秒前
小二郎应助HHH采纳,获得10
5秒前
6秒前
7秒前
8秒前
浮游应助杨一一采纳,获得10
8秒前
8秒前
8秒前
简单的仰发布了新的文献求助10
10秒前
852应助自信的高山采纳,获得10
10秒前
11秒前
小二郎应助勤劳滑板采纳,获得10
11秒前
学术虫发布了新的文献求助10
11秒前
jamaisvu完成签到 ,获得积分10
12秒前
12秒前
13秒前
嘟嘟发布了新的文献求助10
13秒前
Wang发布了新的文献求助30
13秒前
绝望的文盲完成签到,获得积分10
13秒前
大模型应助小歘歘采纳,获得10
13秒前
cindy5620发布了新的文献求助10
14秒前
14秒前
wzr发布了新的文献求助10
14秒前
GuanguanYaa发布了新的文献求助10
15秒前
李健的小迷弟应助寻光人采纳,获得10
16秒前
18秒前
18秒前
姜折酒发布了新的文献求助10
18秒前
18秒前
简单的仰完成签到,获得积分20
19秒前
无花果应助学术虫采纳,获得10
19秒前
张11发布了新的文献求助10
19秒前
sandyleung完成签到,获得积分10
19秒前
20秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132185
求助须知:如何正确求助?哪些是违规求助? 4333666
关于积分的说明 13501674
捐赠科研通 4170698
什么是DOI,文献DOI怎么找? 2286593
邀请新用户注册赠送积分活动 1287479
关于科研通互助平台的介绍 1228414