Data Reconstruction via Consensus Graph Learning for Effective Anomaly Detection in Industrial IoT

异常检测 计算机科学 图形 数据挖掘 投影(关系代数) 异常(物理) 维数之咒 数据建模 人工智能 算法 理论计算机科学 物理 数据库 凝聚态物理
作者
Lin Li,Hongchun Qu,Zhaoni Li,Jian Zheng,Xiaoming Tang,Ping Liu
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/tii.2023.3316220
摘要

In the industrial Internet of Things (IIoT), anomaly detection is fundamental to ensuring system safety and product quality, among other things. However, the massive amount of unlabeled, high-dimensional data generated in the IIoT challenges some existing anomaly detection methods as follows: 1) the distance concentration caused by the high dimensionality of the data can cause a decrease in the detection accuracy of some of the methods; and 2) some of the methods fail to explore the intrinsic relationships between the data, resulting in less effective detection of anomalies in the data. To handle the above challenges, a framework named data reconstruction via consensus graph learning (DRCG) and two anomaly score functions are proposed. Specifically, DRCG overcomes the distance concentration problem and explores the intrinsic relationships of the data by integrating projection learning, low-dimensional embedding, and consensus graph learning into a unified objective function. Then, an iterative algorithm is designed to solve the DRCG model. By doing so, DRCG not only drives the reconstruction error of abnormal samples higher than that of normal samples, but also obtains the projection that can effectively extract the intrinsic relationship between the data. Furthermore, to identify anomalies in the data, two anomaly score functions based on the reconstruction error and projection are designed, respectively. To achieve online anomaly detection for streaming data, DRCG with the projection-based anomaly score function is extended into an online version. The effectiveness and superiority of the proposed methods have been demonstrated on four real-world datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dddd发布了新的文献求助10
刚刚
1秒前
2秒前
4秒前
刻苦的晓蕾完成签到,获得积分10
4秒前
6秒前
复杂的如萱完成签到,获得积分10
9秒前
NINI发布了新的文献求助10
9秒前
小聖完成签到 ,获得积分10
9秒前
keyanniniz完成签到,获得积分10
10秒前
11秒前
xuyirong完成签到,获得积分10
12秒前
salapao完成签到,获得积分10
14秒前
学术laji完成签到 ,获得积分10
14秒前
Alex完成签到,获得积分10
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
打打应助科研通管家采纳,获得10
16秒前
Cloud应助科研通管家采纳,获得30
16秒前
今后应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
脑洞疼应助科研通管家采纳,获得10
17秒前
打打应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
Cloud应助科研通管家采纳,获得30
17秒前
爆米花应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
17秒前
ZLY完成签到 ,获得积分10
19秒前
NINI完成签到,获得积分20
21秒前
24秒前
25秒前
视野胤发布了新的文献求助10
29秒前
瘦瘦曼凝发布了新的文献求助30
30秒前
白天发布了新的文献求助10
35秒前
35秒前
汉堡包应助成就问寒采纳,获得30
36秒前
37秒前
oceanao应助caq采纳,获得10
38秒前
41秒前
茶多一点酚完成签到,获得积分20
42秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164233
求助须知:如何正确求助?哪些是违规求助? 2814956
关于积分的说明 7907185
捐赠科研通 2474517
什么是DOI,文献DOI怎么找? 1317571
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228