Data Reconstruction via Consensus Graph Learning for Effective Anomaly Detection in Industrial IoT

异常检测 计算机科学 图形 数据挖掘 投影(关系代数) 异常(物理) 维数之咒 数据建模 人工智能 算法 理论计算机科学 物理 数据库 凝聚态物理
作者
Lin Li,Hongchun Qu,Zhaoni Li,Jian Zheng,Xiaoming Tang,Ping Liu
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/tii.2023.3316220
摘要

In the industrial Internet of Things (IIoT), anomaly detection is fundamental to ensuring system safety and product quality, among other things. However, the massive amount of unlabeled, high-dimensional data generated in the IIoT challenges some existing anomaly detection methods as follows: 1) the distance concentration caused by the high dimensionality of the data can cause a decrease in the detection accuracy of some of the methods; and 2) some of the methods fail to explore the intrinsic relationships between the data, resulting in less effective detection of anomalies in the data. To handle the above challenges, a framework named data reconstruction via consensus graph learning (DRCG) and two anomaly score functions are proposed. Specifically, DRCG overcomes the distance concentration problem and explores the intrinsic relationships of the data by integrating projection learning, low-dimensional embedding, and consensus graph learning into a unified objective function. Then, an iterative algorithm is designed to solve the DRCG model. By doing so, DRCG not only drives the reconstruction error of abnormal samples higher than that of normal samples, but also obtains the projection that can effectively extract the intrinsic relationship between the data. Furthermore, to identify anomalies in the data, two anomaly score functions based on the reconstruction error and projection are designed, respectively. To achieve online anomaly detection for streaming data, DRCG with the projection-based anomaly score function is extended into an online version. The effectiveness and superiority of the proposed methods have been demonstrated on four real-world datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小鱼医生完成签到 ,获得积分10
1秒前
JJ发布了新的文献求助10
2秒前
hannah发布了新的文献求助10
3秒前
灰灰喵完成签到 ,获得积分10
3秒前
执着新蕾完成签到,获得积分10
4秒前
蜀山刀客完成签到,获得积分10
5秒前
崔宁宁完成签到 ,获得积分0
8秒前
卓垚完成签到,获得积分10
10秒前
yar完成签到 ,获得积分10
13秒前
nancy应助hannah采纳,获得10
13秒前
碧蓝巧荷完成签到 ,获得积分10
14秒前
QYY完成签到,获得积分10
15秒前
风清扬应助自然白秋采纳,获得20
15秒前
小么完成签到 ,获得积分10
16秒前
美好凡柔完成签到 ,获得积分10
17秒前
进退须臾完成签到,获得积分10
17秒前
zyshao完成签到,获得积分10
22秒前
TG303完成签到,获得积分10
22秒前
干净盼山完成签到,获得积分10
26秒前
liujinjin完成签到,获得积分10
27秒前
smottom完成签到,获得积分0
27秒前
29秒前
maxyer完成签到,获得积分10
30秒前
rayzhanghl完成签到,获得积分10
31秒前
jintian完成签到 ,获得积分10
33秒前
单纯的醉柳完成签到 ,获得积分10
33秒前
善良的火完成签到 ,获得积分10
34秒前
胡楠完成签到,获得积分10
34秒前
乌云乌云快走开完成签到,获得积分10
35秒前
qqaeao完成签到,获得积分10
35秒前
韭菜盒子完成签到,获得积分20
36秒前
万事屋完成签到 ,获得积分10
40秒前
量子星尘发布了新的文献求助10
40秒前
41秒前
wdccx完成签到,获得积分10
41秒前
xzy998应助科研通管家采纳,获得10
43秒前
xzy998应助科研通管家采纳,获得10
43秒前
43秒前
活泼的烙完成签到 ,获得积分10
43秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015670
求助须知:如何正确求助?哪些是违规求助? 3555644
关于积分的说明 11318192
捐赠科研通 3288842
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015