Data Reconstruction via Consensus Graph Learning for Effective Anomaly Detection in Industrial IoT

异常检测 计算机科学 图形 数据挖掘 投影(关系代数) 异常(物理) 维数之咒 数据建模 人工智能 算法 理论计算机科学 凝聚态物理 数据库 物理
作者
Lin Li,Hongchun Qu,Zhaoni Li,Jian Zheng,Xiaoming Tang,Ping Liu
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/tii.2023.3316220
摘要

In the industrial Internet of Things (IIoT), anomaly detection is fundamental to ensuring system safety and product quality, among other things. However, the massive amount of unlabeled, high-dimensional data generated in the IIoT challenges some existing anomaly detection methods as follows: 1) the distance concentration caused by the high dimensionality of the data can cause a decrease in the detection accuracy of some of the methods; and 2) some of the methods fail to explore the intrinsic relationships between the data, resulting in less effective detection of anomalies in the data. To handle the above challenges, a framework named data reconstruction via consensus graph learning (DRCG) and two anomaly score functions are proposed. Specifically, DRCG overcomes the distance concentration problem and explores the intrinsic relationships of the data by integrating projection learning, low-dimensional embedding, and consensus graph learning into a unified objective function. Then, an iterative algorithm is designed to solve the DRCG model. By doing so, DRCG not only drives the reconstruction error of abnormal samples higher than that of normal samples, but also obtains the projection that can effectively extract the intrinsic relationship between the data. Furthermore, to identify anomalies in the data, two anomaly score functions based on the reconstruction error and projection are designed, respectively. To achieve online anomaly detection for streaming data, DRCG with the projection-based anomaly score function is extended into an online version. The effectiveness and superiority of the proposed methods have been demonstrated on four real-world datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
orixero应助玉yu采纳,获得10
刚刚
1秒前
sansan发布了新的文献求助10
1秒前
劉劉完成签到 ,获得积分10
2秒前
酷波er应助阳光的衫采纳,获得10
2秒前
火星上的菲鹰应助hkh采纳,获得10
2秒前
SciGPT应助Ll采纳,获得10
3秒前
buno应助懦弱的安珊采纳,获得10
3秒前
MADKAI发布了新的文献求助10
4秒前
happy完成签到,获得积分10
4秒前
丰知然完成签到,获得积分0
4秒前
马佳凯完成签到,获得积分20
5秒前
徐翩跹发布了新的文献求助10
5秒前
lan发布了新的文献求助10
5秒前
科研民工发布了新的文献求助10
5秒前
小二郎应助夏昼采纳,获得10
6秒前
香蕉觅云应助LIU采纳,获得10
6秒前
sunny完成签到,获得积分10
6秒前
7秒前
所所应助大意的安白采纳,获得10
7秒前
elena发布了新的文献求助10
7秒前
7秒前
Tal完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
Orange应助毕业就好采纳,获得10
9秒前
机灵画板发布了新的文献求助10
9秒前
10秒前
10秒前
桐桐应助Elaine采纳,获得10
10秒前
Ymj发布了新的文献求助10
11秒前
JamesPei应助yyf采纳,获得10
11秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740