Speech Recognition via CTC-CNN Model

计算机科学 语音识别 过度拟合 字错误率 隐马尔可夫模型 声学模型 连接主义 卷积神经网络 人工神经网络 人工智能 模式识别(心理学) 语音处理
作者
Wen‐Tsai Sung,Hao‐Wei Kang,Sung‐Jung Hsiao
出处
期刊:Computers, materials & continua 卷期号:76 (3): 3833-3858 被引量:1
标识
DOI:10.32604/cmc.2023.040024
摘要

In the speech recognition system, the acoustic model is an important underlying model, and its accuracy directly affects the performance of the entire system. This paper introduces the construction and training process of the acoustic model in detail and studies the Connectionist temporal classification (CTC) algorithm, which plays an important role in the end-to-end framework, established a convolutional neural network (CNN) combined with an acoustic model of Connectionist temporal classification to improve the accuracy of speech recognition. This study uses a sound sensor, ReSpeaker Mic Array v2.0.1, to convert the collected speech signals into text or corresponding speech signals to improve communication and reduce noise and hardware interference. The baseline acoustic model in this study faces challenges such as long training time, high error rate, and a certain degree of overfitting. The model is trained through continuous design and improvement of the relevant parameters of the acoustic model, and finally the performance is selected according to the evaluation index. Excellent model, which reduces the error rate to about 18%, thus improving the accuracy rate. Finally, comparative verification was carried out from the selection of acoustic feature parameters, the selection of modeling units, and the speaker’s speech rate, which further verified the excellent performance of the CTCCNN_5 + BN + Residual model structure. In terms of experiments, to train and verify the CTC-CNN baseline acoustic model, this study uses THCHS-30 and ST-CMDS speech data sets as training data sets, and after 54 epochs of training, the word error rate of the acoustic model training set is 31%, the word error rate of the test set is stable at about 43%. This experiment also considers the surrounding environmental noise. Under the noise level of 80∼90 dB, the accuracy rate is 88.18%, which is the worst performance among all levels. In contrast, at 40–60 dB, the accuracy was as high as 97.33% due to less noise pollution.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CRUISE发布了新的文献求助10
2秒前
4秒前
无极微光应助科研通管家采纳,获得20
4秒前
4秒前
mimi123409完成签到,获得积分10
4秒前
ctyyyu发布了新的文献求助10
4秒前
hyw010724完成签到,获得积分10
5秒前
蔡从安发布了新的文献求助10
8秒前
阳春发布了新的文献求助10
8秒前
薛之谦的猫完成签到,获得积分10
11秒前
14秒前
yfjia应助ctyyyu采纳,获得10
17秒前
七塔蹦蹦蹦完成签到,获得积分10
18秒前
19秒前
20秒前
炮仗完成签到 ,获得积分10
21秒前
24秒前
布丁大师发布了新的文献求助10
25秒前
dsa2815发布了新的文献求助10
26秒前
29秒前
30秒前
M27发布了新的文献求助10
32秒前
32秒前
34秒前
kiki发布了新的文献求助10
35秒前
39秒前
ky完成签到 ,获得积分10
41秒前
datang完成签到,获得积分10
43秒前
45秒前
星辰大海应助搞怪的冰凡采纳,获得10
45秒前
DC-CIK军团完成签到 ,获得积分10
45秒前
Capybara发布了新的文献求助10
45秒前
kiki完成签到,获得积分10
48秒前
azure发布了新的文献求助10
49秒前
丘比特应助Viv采纳,获得10
52秒前
53秒前
害羞大白菜完成签到,获得积分10
56秒前
57秒前
57秒前
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Functional Analysis 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5872826
求助须知:如何正确求助?哪些是违规求助? 6492621
关于积分的说明 15670004
捐赠科研通 4990251
什么是DOI,文献DOI怎么找? 2690186
邀请新用户注册赠送积分活动 1632687
关于科研通互助平台的介绍 1590578