Speech Recognition via CTC-CNN Model

计算机科学 语音识别 过度拟合 字错误率 隐马尔可夫模型 声学模型 连接主义 卷积神经网络 人工神经网络 人工智能 模式识别(心理学) 语音处理
作者
Wen‐Tsai Sung,Hao‐Wei Kang,Sung‐Jung Hsiao
出处
期刊:Computers, materials & continua 卷期号:76 (3): 3833-3858 被引量:1
标识
DOI:10.32604/cmc.2023.040024
摘要

In the speech recognition system, the acoustic model is an important underlying model, and its accuracy directly affects the performance of the entire system. This paper introduces the construction and training process of the acoustic model in detail and studies the Connectionist temporal classification (CTC) algorithm, which plays an important role in the end-to-end framework, established a convolutional neural network (CNN) combined with an acoustic model of Connectionist temporal classification to improve the accuracy of speech recognition. This study uses a sound sensor, ReSpeaker Mic Array v2.0.1, to convert the collected speech signals into text or corresponding speech signals to improve communication and reduce noise and hardware interference. The baseline acoustic model in this study faces challenges such as long training time, high error rate, and a certain degree of overfitting. The model is trained through continuous design and improvement of the relevant parameters of the acoustic model, and finally the performance is selected according to the evaluation index. Excellent model, which reduces the error rate to about 18%, thus improving the accuracy rate. Finally, comparative verification was carried out from the selection of acoustic feature parameters, the selection of modeling units, and the speaker’s speech rate, which further verified the excellent performance of the CTCCNN_5 + BN + Residual model structure. In terms of experiments, to train and verify the CTC-CNN baseline acoustic model, this study uses THCHS-30 and ST-CMDS speech data sets as training data sets, and after 54 epochs of training, the word error rate of the acoustic model training set is 31%, the word error rate of the test set is stable at about 43%. This experiment also considers the surrounding environmental noise. Under the noise level of 80∼90 dB, the accuracy rate is 88.18%, which is the worst performance among all levels. In contrast, at 40–60 dB, the accuracy was as high as 97.33% due to less noise pollution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清脆断秋发布了新的文献求助10
刚刚
yy发布了新的文献求助10
2秒前
Lucas应助赶due小天才采纳,获得10
2秒前
2秒前
123关注了科研通微信公众号
2秒前
梁大海发布了新的文献求助10
2秒前
静谧180发布了新的文献求助10
2秒前
科研dog完成签到,获得积分10
3秒前
4秒前
杳鸢应助看海采纳,获得10
4秒前
MM发布了新的文献求助10
4秒前
5秒前
6秒前
琪琪完成签到,获得积分10
7秒前
天天快乐应助啦熊采纳,获得10
7秒前
111完成签到,获得积分10
7秒前
JOEYEE完成签到,获得积分10
7秒前
我是老大应助梁大海采纳,获得10
7秒前
orixero应助jie367采纳,获得10
8秒前
林昊发布了新的文献求助10
8秒前
zhaideqi7发布了新的文献求助10
9秒前
9秒前
9秒前
充电宝应助拼搏的帆布鞋采纳,获得10
10秒前
wos完成签到,获得积分10
10秒前
积极映安发布了新的文献求助10
10秒前
王京完成签到,获得积分10
10秒前
蓝心语发布了新的文献求助10
10秒前
研友_VZG7GZ应助lanbing802采纳,获得10
10秒前
shengch0234完成签到,获得积分10
11秒前
12秒前
wos发布了新的文献求助10
13秒前
yiyi发布了新的文献求助10
13秒前
13秒前
hfgeyt完成签到,获得积分10
14秒前
14秒前
14秒前
充电宝应助DianaRang采纳,获得30
15秒前
15秒前
青衍应助万英雄采纳,获得10
15秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222200
求助须知:如何正确求助?哪些是违规求助? 2870768
关于积分的说明 8172106
捐赠科研通 2537838
什么是DOI,文献DOI怎么找? 1369757
科研通“疑难数据库(出版商)”最低求助积分说明 645582
邀请新用户注册赠送积分活动 619333