Speech Recognition via CTC-CNN Model

计算机科学 语音识别 过度拟合 字错误率 隐马尔可夫模型 声学模型 连接主义 卷积神经网络 人工神经网络 人工智能 模式识别(心理学) 语音处理
作者
Wen‐Tsai Sung,Hao‐Wei Kang,Sung‐Jung Hsiao
出处
期刊:Computers, materials & continua 卷期号:76 (3): 3833-3858 被引量:1
标识
DOI:10.32604/cmc.2023.040024
摘要

In the speech recognition system, the acoustic model is an important underlying model, and its accuracy directly affects the performance of the entire system. This paper introduces the construction and training process of the acoustic model in detail and studies the Connectionist temporal classification (CTC) algorithm, which plays an important role in the end-to-end framework, established a convolutional neural network (CNN) combined with an acoustic model of Connectionist temporal classification to improve the accuracy of speech recognition. This study uses a sound sensor, ReSpeaker Mic Array v2.0.1, to convert the collected speech signals into text or corresponding speech signals to improve communication and reduce noise and hardware interference. The baseline acoustic model in this study faces challenges such as long training time, high error rate, and a certain degree of overfitting. The model is trained through continuous design and improvement of the relevant parameters of the acoustic model, and finally the performance is selected according to the evaluation index. Excellent model, which reduces the error rate to about 18%, thus improving the accuracy rate. Finally, comparative verification was carried out from the selection of acoustic feature parameters, the selection of modeling units, and the speaker’s speech rate, which further verified the excellent performance of the CTCCNN_5 + BN + Residual model structure. In terms of experiments, to train and verify the CTC-CNN baseline acoustic model, this study uses THCHS-30 and ST-CMDS speech data sets as training data sets, and after 54 epochs of training, the word error rate of the acoustic model training set is 31%, the word error rate of the test set is stable at about 43%. This experiment also considers the surrounding environmental noise. Under the noise level of 80∼90 dB, the accuracy rate is 88.18%, which is the worst performance among all levels. In contrast, at 40–60 dB, the accuracy was as high as 97.33% due to less noise pollution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
香菜丸子发布了新的文献求助10
3秒前
3秒前
dropofwater完成签到,获得积分10
4秒前
塞维娅发布了新的文献求助20
4秒前
Exc完成签到,获得积分0
4秒前
时光发布了新的文献求助10
5秒前
pluto应助LL采纳,获得10
5秒前
天天快乐应助dilli采纳,获得10
6秒前
6秒前
赘婿应助满天星采纳,获得10
7秒前
现代子默发布了新的文献求助10
7秒前
8秒前
腼腆的老虎完成签到,获得积分10
8秒前
109902RQ完成签到,获得积分20
8秒前
渔火完成签到 ,获得积分0
8秒前
8秒前
9秒前
9秒前
Y2024完成签到,获得积分10
9秒前
刚刚完成签到,获得积分10
10秒前
Hello应助身处人海采纳,获得10
11秒前
炙热的夜雪完成签到 ,获得积分10
11秒前
11秒前
11秒前
pcx发布了新的文献求助10
13秒前
田様应助光亮白山采纳,获得10
13秒前
依帕尔发布了新的文献求助10
13秒前
Schwarz发布了新的文献求助30
14秒前
dandan发布了新的文献求助10
14秒前
健珍发布了新的文献求助10
14秒前
yzh完成签到,获得积分10
14秒前
15秒前
15秒前
等你下课完成签到 ,获得积分10
15秒前
18秒前
18秒前
天天发布了新的文献求助10
19秒前
小郭应助刘sir采纳,获得10
20秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961465
求助须知:如何正确求助?哪些是违规求助? 3507798
关于积分的说明 11138163
捐赠科研通 3240268
什么是DOI,文献DOI怎么找? 1790870
邀请新用户注册赠送积分活动 872609
科研通“疑难数据库(出版商)”最低求助积分说明 803288