Prediction of antidepressant responses to non-invasive brain stimulation using frontal electroencephalogram signals: Cross-dataset comparisons and validation

支持向量机 脑电图 逻辑回归 随机森林 磁刺激 二元分类 人工智能 刺激 心理学 模式识别(心理学) 医学 听力学 机器学习 计算机科学 神经科学
作者
Cheng‐Ta Li,Chi-Sheng Chen,Chih‐Ming Cheng,Chung-Ping Chen,Jen‐Ping Chen,Mu‐Hong Chen,Ya‐Mei Bai,Shih‐Jen Tsai
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:343: 86-95 被引量:3
标识
DOI:10.1016/j.jad.2023.08.059
摘要

10-Hz repetitive transcranial magnetic stimulation(rTMS) and intermittent theta-burst stimulation(iTBS) over left prefrontal cortex are FDA-approved, effective options for treatment-resistant depression (TRD). Optimal prediction models for iTBS and rTMS remain elusive. Therefore, our primary objective was to compare prediction accuracy between classification by frontal theta activity alone and machine learning(ML) models by linear and non-linear frontal signals. The second objective was to study an optimal ML model for predicting responses to rTMS and iTBS.Two rTMS and iTBS datasets (n = 163) were used: one randomized controlled trial dataset (RCTD; n = 96) and one outpatient dataset (OPD; n = 67). Frontal theta and non-linear EEG features that reflect trend, stability, and complexity were extracted. Pretreatment frontal EEG and ML algorithms, including classical support vector machine(SVM), random forest(RF), XGBoost, and CatBoost, were analyzed. Responses were defined as ≥50 % depression improvement after treatment. Response rates between those with and without pretreatment prediction in another independent outpatient cohort (n = 208) were compared.Prediction accuracy using combined EEG features by SVM was better than frontal theta by logistic regression. The accuracy for OPD patients significantly dropped using the RCTD-trained SVM model. Modern ML models, especially RF (rTMS = 83.3 %, iTBS = 88.9 %, p-value(ACC > NIR) < 0.05 for iTBS), performed significantly above chance and had higher accuracy than SVM using both selected features (p < 0.05, FDR corrected for multiple comparisons) or all EEG features. Response rates among those receiving prediction before treatment were significantly higher than those without prediction (p = 0.035).The first study combining linear and non-linear EEG features could accurately predict responses to left PFC iTBS. The bootstraps-based ML model (i.e., RF) had the best predictive accuracy for rTMS and iTBS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无花果应助朱小小采纳,获得20
2秒前
沉默大白完成签到 ,获得积分10
2秒前
来瓶可乐完成签到 ,获得积分10
3秒前
3秒前
丘比特应助诸葛一笑采纳,获得10
4秒前
YY发布了新的文献求助10
6秒前
6秒前
8秒前
积极绿老头应助涨涨采纳,获得10
9秒前
Camellia发布了新的文献求助10
9秒前
情怀应助雪白一刀采纳,获得10
9秒前
标致溪流发布了新的文献求助10
11秒前
李真完成签到 ,获得积分10
12秒前
小蘑菇应助Hh采纳,获得10
12秒前
yaoyao发布了新的文献求助10
12秒前
乐观期待完成签到,获得积分10
14秒前
寒冷山柳应助大鲨碧采纳,获得10
14秒前
14秒前
15秒前
song完成签到 ,获得积分10
16秒前
17秒前
17秒前
Hello应助Mayday采纳,获得10
18秒前
华仔应助ggao采纳,获得10
18秒前
zydxyx驳回了赘婿应助
18秒前
Camellia完成签到,获得积分10
18秒前
丑丑阿发布了新的文献求助10
19秒前
19秒前
20秒前
MateoX发布了新的文献求助10
20秒前
可爱的函函应助YY采纳,获得10
21秒前
杨晓白发布了新的文献求助10
21秒前
哆啦A梦的小小王完成签到 ,获得积分10
22秒前
chenshen发布了新的文献求助10
22秒前
24秒前
Hh发布了新的文献求助10
24秒前
李健的小迷弟应助易寒采纳,获得10
24秒前
科研通AI2S应助人物让人采纳,获得10
25秒前
25秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161364
求助须知:如何正确求助?哪些是违规求助? 2812813
关于积分的说明 7896925
捐赠科研通 2471712
什么是DOI,文献DOI怎么找? 1316085
科研通“疑难数据库(出版商)”最低求助积分说明 631156
版权声明 602112