Disentangled Interest importance aware Knowledge Graph Neural Network for Fund Recommendation

计算机科学 投资基金 推荐系统 可解释性 投资管理 图形 杠杆(统计) 经理人基金经理 财务 人工智能 业务 情报检索 理论计算机科学 市场流动性
作者
Ke Tu,Wenyu Qu,Zhengwei Wu,Zhiqiang Zhang,Zhongyi Liu,Yufen Zhao,Le Wu,Jun Zhou,Guannan Zhang
标识
DOI:10.1145/3583780.3614846
摘要

At present, people are gradually becoming aware of financial management and thus fund recommendation attracts more and more attention to help them find suitable funds quickly. As a user usually takes many factors (e.g., fund theme, fund manager) into account when investing a fund and the fund usually consists of a substantial collection of investments, effectively modeling multi-interest representations is more crucial for personalized fund recommendation than the traditional goods recommendation. However, existing multi-interest methods are largely sub-optimal for fund recommendation, since they ignore financial domain knowledge and diverse fund investment intentions. In this work, we propose a Disentangled Interest importance aware Knowledge Graph Neural Network (DIKGNN) for personalized fund recommendation on FinTech platforms. In particular, we restrict the multiple intent spaces by introducing the attribute nodes from the fund knowledge graph as the minimum intent modeling unit to utilize financial domain knowledge and provide interpretability. In the intent space, we define disentangled intent representations, equipped with intent importance distributions to describe the diverse fund investment intentions. Then we design a new neighbor aggregation mechanism with the learned intent importance distribution upon the interaction graph and knowledge graph to collect multi-intent information. Furthermore, we leverage micro independence and macro balance constraints on the representations and distributions respectively to encourage intent independence and diversity. The extensive experiments on public recommendation benchmarks demonstrate that DIKGNN can achieve substantial improvement over state-of-the-art methods. Our proposed model is also evaluated over one real-world industrial fund dataset from a FinTech platform and has been deployed online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玻丽露露完成签到,获得积分10
3秒前
swapping完成签到 ,获得积分10
4秒前
枝挽完成签到,获得积分10
4秒前
凝眸完成签到,获得积分10
4秒前
5秒前
科研小垃圾完成签到,获得积分10
5秒前
6秒前
6秒前
稳重的安萱完成签到,获得积分10
6秒前
CR7应助优美霸采纳,获得20
7秒前
顾矜应助宝时捷采纳,获得10
7秒前
Liufgui应助小静静采纳,获得50
8秒前
Rondab应助Salt采纳,获得10
8秒前
comic发布了新的文献求助10
10秒前
10秒前
mk91完成签到,获得积分10
11秒前
peace完成签到,获得积分10
11秒前
平常的心发布了新的文献求助10
12秒前
JohnsonTse发布了新的文献求助10
12秒前
深情安青应助棠真采纳,获得10
12秒前
melody完成签到,获得积分10
15秒前
mk91发布了新的文献求助10
15秒前
17秒前
sas完成签到,获得积分10
18秒前
科研小白_李完成签到,获得积分10
18秒前
19秒前
慕青应助孙彩瑛采纳,获得10
19秒前
姜紫文完成签到,获得积分10
19秒前
20秒前
20秒前
20秒前
槿裡完成签到 ,获得积分10
21秒前
22秒前
hai发布了新的文献求助30
24秒前
别来无恙发布了新的文献求助10
24秒前
邱丘邱发布了新的文献求助15
26秒前
windows发布了新的文献求助10
26秒前
邓秀君完成签到,获得积分10
27秒前
打打应助科研通管家采纳,获得10
28秒前
小马甲应助科研通管家采纳,获得10
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998752
求助须知:如何正确求助?哪些是违规求助? 3538216
关于积分的说明 11273702
捐赠科研通 3277200
什么是DOI,文献DOI怎么找? 1807436
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075