When Broad Learning System Meets Label Noise Learning: A Reweighting Learning Framework

稳健性(进化) 计算机科学 噪音(视频) 人工神经网络 人工智能 标量(数学) 机器学习 样品(材料) 模式识别(心理学) 数学 几何学 色谱法 生物化学 基因 图像(数学) 化学
作者
Licheng Liu,Junhao Chen,Bin Yang,Qiying Feng,C. L. Philip Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:5
标识
DOI:10.1109/tnnls.2023.3317255
摘要

Broad learning system (BLS) is a novel neural network with efficient learning and expansion capacity, but it is sensitive to noise. Accordingly, the existing robust broad models try to suppress noise by assigning each sample an appropriate scalar weight to tune down the contribution of noisy samples in network training. However, they disregard the useful information of the noncorrupted elements hidden in the noisy samples, leading to unsatisfactory performance. To this end, a novel BLS with adaptive reweighting (BLS-AR) strategy is proposed in this article for the classification of data with label noise. Different from the previous works, the BLS-AR learns for each sample a weight vector rather than a scalar weight to indicate the noise degree of each element in the sample, which extends the reweighting strategy from sample level to element level. This enables the proposed network to precisely identify noisy elements and thus highlight the contribution of informative ones to train a more accurate representation model. Thanks to the separability of the model, the proposed network can be divided into several subnetworks, each of which can be trained efficiently. In addition, three corresponding incremental learning algorithms of the BLS-AR are developed for adding new samples or expanding the network. Substantial experiments are conducted to explicate the effectiveness and robustness of the proposed BLS-AR model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
Alice完成签到,获得积分10
刚刚
Just森发布了新的文献求助30
刚刚
MooN完成签到,获得积分10
刚刚
2秒前
谢俞发布了新的文献求助10
3秒前
酷波er应助叶远望采纳,获得10
3秒前
自费上学又一天完成签到 ,获得积分10
3秒前
xiluo发布了新的文献求助10
4秒前
4秒前
等待毛豆完成签到,获得积分10
5秒前
dyq发布了新的文献求助10
6秒前
大气颜演发布了新的文献求助10
6秒前
6秒前
浮游应助hhppt采纳,获得10
8秒前
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
9秒前
cherish完成签到,获得积分10
9秒前
所所应助科研通管家采纳,获得10
9秒前
9秒前
Xiu应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
蜀安应助科研通管家采纳,获得30
9秒前
yar应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
Om应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
yar应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
jyy应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499570
求助须知:如何正确求助?哪些是违规求助? 4596391
关于积分的说明 14454281
捐赠科研通 4529548
什么是DOI,文献DOI怎么找? 2482060
邀请新用户注册赠送积分活动 1466041
关于科研通互助平台的介绍 1438891