Prediction of single track clad quality in laser metal deposition using dissimilar materials: Comparison of machine learning-based approaches

平均绝对百分比误差 均方误差 材料科学 人工神经网络 超参数 近似误差 激光功率缩放 梯度升压 背景(考古学) 计算机科学 人工智能 机器学习 统计 算法 数学 激光器 随机森林 光学 古生物学 物理 生物
作者
Pascal Paulus,Yannick Ruppert,Michael Vielhaber,Juergen Griebsch
出处
期刊:Journal of Laser Applications [Laser Institute of America]
卷期号:35 (4)
标识
DOI:10.2351/7.0001108
摘要

Powder-based laser metal deposition (LMD) offers a promising additive manufacturing process, given the large number of available materials for cladding or generative applications. In laser cladding of dissimilar materials, it is necessary to control the mixing of substrate and additive in the interaction zone to ensure safe metallurgical bonding while avoiding critical chemical compositions that lead to undesired phase precipitation. However, the generation of empirical data for LMD process development is very challenging and time-consuming. In this context, different machine learning models are examined to identify whether they can converge with a small amount of empirical data. In this work, the prediction accuracy of back propagation neural network (BPNN), long short-term memory (LSTM), and extreme gradient boosting (XGBoost) was compared using mean squared error (MSE) and mean absolute percentage error (MAPE). A hyperparameter optimization was performed for each model. The materials used are 316L as the substrate and VDM Alloy 780 as the additive. The dataset used consists of 40 empirically determined values. The input parameters are laser power, feed rate, and powder mass flow rate. The quality characteristics of height, width, dilution, Fe-amount, and seam contour are defined as outputs. As a result, the predictions were compared with retained validation data and described as MSE and MAPE to determine the prediction accuracy for the models. BPNN achieved a prediction accuracy of 0.0072 MSE and 4.37% MAPE and XGBoost of 0.0084 MSE and 6.34% MAPE. The most accurate prediction was achieved by LSTM with 0.0053 MSE and 3.75% MAPE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cc发布了新的文献求助10
刚刚
2秒前
2秒前
mxy发布了新的文献求助10
2秒前
9秒前
英勇绮南完成签到,获得积分10
10秒前
HHHHHJ完成签到,获得积分10
11秒前
13秒前
14秒前
14秒前
17秒前
17秒前
852应助橙子采纳,获得10
18秒前
18秒前
scienceL完成签到,获得积分10
19秒前
敏感初露发布了新的文献求助10
21秒前
等风来发布了新的文献求助10
22秒前
彳亍1117应助keke采纳,获得10
22秒前
23秒前
英俊的铭应助加油鸭采纳,获得10
24秒前
Joe完成签到,获得积分20
25秒前
25秒前
WYR发布了新的文献求助10
26秒前
26秒前
26秒前
petli发布了新的文献求助10
28秒前
28秒前
gg发布了新的文献求助10
29秒前
30秒前
31秒前
31秒前
无花果应助大地采纳,获得10
31秒前
沉默友绿发布了新的文献求助10
33秒前
35秒前
39秒前
充电宝应助归途采纳,获得10
39秒前
会飞的小猪完成签到,获得积分0
40秒前
乐乐应助青栀采纳,获得10
40秒前
目土土发布了新的文献求助10
40秒前
丘比特应助zz采纳,获得10
41秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138255
求助须知:如何正确求助?哪些是违规求助? 2789256
关于积分的说明 7790627
捐赠科研通 2445551
什么是DOI,文献DOI怎么找? 1300583
科研通“疑难数据库(出版商)”最低求助积分说明 625969
版权声明 601053