Prediction of single track clad quality in laser metal deposition using dissimilar materials: Comparison of machine learning-based approaches

平均绝对百分比误差 均方误差 材料科学 人工神经网络 超参数 近似误差 激光功率缩放 梯度升压 背景(考古学) 计算机科学 人工智能 机器学习 统计 算法 数学 激光器 随机森林 光学 古生物学 物理 生物
作者
Pascal Paulus,Yannick Ruppert,Michael Vielhaber,Juergen Griebsch
出处
期刊:Journal of Laser Applications [Laser Institute of America]
卷期号:35 (4)
标识
DOI:10.2351/7.0001108
摘要

Powder-based laser metal deposition (LMD) offers a promising additive manufacturing process, given the large number of available materials for cladding or generative applications. In laser cladding of dissimilar materials, it is necessary to control the mixing of substrate and additive in the interaction zone to ensure safe metallurgical bonding while avoiding critical chemical compositions that lead to undesired phase precipitation. However, the generation of empirical data for LMD process development is very challenging and time-consuming. In this context, different machine learning models are examined to identify whether they can converge with a small amount of empirical data. In this work, the prediction accuracy of back propagation neural network (BPNN), long short-term memory (LSTM), and extreme gradient boosting (XGBoost) was compared using mean squared error (MSE) and mean absolute percentage error (MAPE). A hyperparameter optimization was performed for each model. The materials used are 316L as the substrate and VDM Alloy 780 as the additive. The dataset used consists of 40 empirically determined values. The input parameters are laser power, feed rate, and powder mass flow rate. The quality characteristics of height, width, dilution, Fe-amount, and seam contour are defined as outputs. As a result, the predictions were compared with retained validation data and described as MSE and MAPE to determine the prediction accuracy for the models. BPNN achieved a prediction accuracy of 0.0072 MSE and 4.37% MAPE and XGBoost of 0.0084 MSE and 6.34% MAPE. The most accurate prediction was achieved by LSTM with 0.0053 MSE and 3.75% MAPE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
meowmeow完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
zaojunqi发布了新的文献求助10
7秒前
meng17应助reds采纳,获得30
7秒前
7秒前
李健的小迷弟应助pharrah采纳,获得10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
yihuji完成签到 ,获得积分10
9秒前
青岚完成签到 ,获得积分10
9秒前
科目三应助爱听歌初曼采纳,获得10
11秒前
冥土追魂发布了新的文献求助10
11秒前
MM11111发布了新的文献求助10
11秒前
幸福广山发布了新的文献求助10
12秒前
15秒前
15秒前
15秒前
充电宝应助Evan Wang采纳,获得10
16秒前
勤劳的颦完成签到,获得积分10
17秒前
罗博超完成签到,获得积分10
19秒前
19秒前
xiao_niu发布了新的文献求助10
19秒前
一由天完成签到,获得积分10
20秒前
zaojunqi完成签到,获得积分10
20秒前
20秒前
20秒前
21秒前
科目三应助benj采纳,获得10
22秒前
22秒前
shensiang完成签到,获得积分10
22秒前
23秒前
yx_cheng应助巫马尔槐采纳,获得10
23秒前
24秒前
科研狗发布了新的文献求助10
25秒前
没有色彩的多崎作完成签到,获得积分20
26秒前
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956715
求助须知:如何正确求助?哪些是违规求助? 3502823
关于积分的说明 11110282
捐赠科研通 3233774
什么是DOI,文献DOI怎么找? 1787498
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802172