气味
人工智能
感知
计算机科学
图形
集合(抽象数据类型)
模式识别(心理学)
校长(计算机安全)
代表(政治)
嗅觉
心理学
神经科学
理论计算机科学
政治
政治学
法学
程序设计语言
操作系统
作者
Brian K. Lee,Emily J. Mayhew,Benjamín Sánchez-Lengeling,Jennifer N. Wei,Wesley Wei Qian,Kelsie A. Little,Matthew Andres,Britney B. Nguyen,Theresa Moloy,Jacob Yasonik,Jane K. Parker,Richard C. Gerkin,Joel D. Mainland,Alexander B. Wiltschko
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2023-09-01
卷期号:381 (6661): 999-1006
被引量:53
标识
DOI:10.1126/science.ade4401
摘要
Mapping molecular structure to odor perception is a key challenge in olfaction. We used graph neural networks to generate a principal odor map (POM) that preserves perceptual relationships and enables odor quality prediction for previously uncharacterized odorants. The model was as reliable as a human in describing odor quality: On a prospective validation set of 400 out-of-sample odorants, the model-generated odor profile more closely matched the trained panel mean than did the median panelist. By applying simple, interpretable, theoretically rooted transformations, the POM outperformed chemoinformatic models on several other odor prediction tasks, indicating that the POM successfully encoded a generalized map of structure-odor relationships. This approach broadly enables odor prediction and paves the way toward digitizing odors.
科研通智能强力驱动
Strongly Powered by AbleSci AI