[Development progress of stationary phase for supercritical fluid chromatography and related application in natural products].

超临界流体色谱法 超临界流体 分析物 色谱法 化学 溶解度 相(物质) 高效液相色谱法 扩散 超临界流体萃取 分析化学(期刊) 热力学 有机化学 物理
作者
Chunying Song,Gaowa Jin,Dongping Yu,Donghai Xia,Jing Feng,Zhimou Guo,Xinmiao Liang
出处
期刊:PubMed 卷期号:41 (10): 866-878
标识
DOI:10.3724/sp.j.1123.2023.07024
摘要

Supercritical fluid chromatography (SFC) is an environment-friendly and efficient column chromatography technology that was developed to expand the application range of high performance liquid chromatography (HPLC) using a supercritical fluid as the mobile phase. A supercritical fluid has a temperature and pressure that are above the critical values as well as relatively dynamic characteristics that are between those of a gas and liquid. Supercritical fluids combine the advantages of high solubility and diffusion, as their diffusion and viscosity coefficients are equivalent to those of a gas, while maintaining a density that is comparable with that of a liquid. Owing to the remarkable compressibility of supercritical fluids, analyte retention in SFC is significantly influenced by the density of the mobile phase. Thus, the column temperature and back pressure are crucial variables that regulate analyte retention in SFC. Increasing the back pressure can increase the density and solubility of the mobile phase, leading to reductions in retention time. The column temperature can affect selectivity and retention, and the degree to which different analytes are affected by this property varies. On the one hand, increasing the temperature reduces the density of the mobile phase, thereby extending the retention time of the analytes; on the other hand, it can also increase the energy of molecules, leading to a shorter retention time of the analyte on the stationary phase. CO2, the most widely employed supercritical fluid to date, presents moderate critical conditions and, more importantly, is miscible with a variety of polar organic solvents, including small quantities of water. In comparison with the mobile phases used in normal-phase liquid chromatography (NPLC) and reversed-phase liquid chromatography (RPLC), the mobile phase for SFC has a polarity that can be extended over a wide range on account of its extensive miscibility. The compatibility of the mobile phase determines the diversity of the stationary phase. Nearly all stationary phases for HPLC, including the nonpolar stationary phases commonly used for RPLC and the polar stationary phases commonly used for NPLC, can be applied to SFC. Because all stationary phases can use the same mobile-phase composition, chromatographic columns with completely different polarities can be employed in SFC. The selectivity of SFC has been effectively expanded, and the technique can be used for the separation of diverse analytes ranging from lipid compounds to polar compounds such as flavonoids, saponins, and peptides. The choice of stationary phase has a great impact on the separation effect of analytes in SFC. As new stationary phases for HPLC are constantly investigated, specialized stationary phases for SFC have also been continuously developed. Researchers have discovered that polar stationary phases containing nitrogen heterocycles such as 2-EP and PIC are highly suitable for SFC because they can effectively manage the peak shape of alkaline compounds and provide good selectivity in separating acidic and neutral compounds.The development of various stationary phases has promoted the applications of SFC in numerous fields such as pharmaceuticals, food production, environmental protection, and natural products. In particular, natural products have specific active skeletons, multiple active groups, and excellent biological activity; hence, these materials can provide many new opportunities for the discovery of novel drugs. According to reports, compounds related to natural products account for 80% of all commercial drugs. However, natural products are among the most challenging compounds to separate because of their complex composition and low concentration of active ingredients. Thus, superior chromatographic methods are required to enable the qualitative and quantitative analysis of natural products. Thanks to technological improvements and a good theoretical framework, the benefits of SFC are gradually becoming more apparent, and its use in separating natural products is expanding. Indeed, in the past 50 years, SFC has developed into a widely used and efficient separation technology. This article provides a brief overview of the characteristics, advantages, and development process of SFC; reviews the available SFC stationary phases and their applications in natural products over the last decade; and discusses prospects on the future development of SFC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顺心的玉米完成签到,获得积分10
刚刚
虚幻盼晴完成签到,获得积分10
刚刚
3秒前
虚幻盼晴发布了新的文献求助30
3秒前
4秒前
jiu发布了新的文献求助20
4秒前
5秒前
afaf发布了新的文献求助10
5秒前
md发布了新的文献求助10
6秒前
徐小徐发布了新的文献求助50
6秒前
7秒前
hahaer发布了新的文献求助30
8秒前
烟花应助独见晓焉采纳,获得10
8秒前
YUERUI关注了科研通微信公众号
9秒前
Yahui完成签到,获得积分20
9秒前
浮游应助wenwen采纳,获得10
10秒前
xue完成签到 ,获得积分10
10秒前
11秒前
风清扬发布了新的文献求助10
12秒前
Ss关闭了Ss文献求助
12秒前
陈惠卿88发布了新的文献求助10
13秒前
独见晓焉完成签到,获得积分10
13秒前
biu完成签到 ,获得积分10
13秒前
14秒前
万能图书馆应助虚幻盼晴采纳,获得10
14秒前
14秒前
15秒前
细腻秋烟发布了新的文献求助10
15秒前
zwj发布了新的文献求助10
16秒前
moonnim发布了新的文献求助10
17秒前
17秒前
在水一方应助胖虎采纳,获得10
18秒前
打打应助飞快的甜瓜采纳,获得10
20秒前
20秒前
20秒前
21秒前
22秒前
完美世界应助PJJJ采纳,获得10
23秒前
Ava应助cheng采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588536
求助须知:如何正确求助?哪些是违规求助? 4671619
关于积分的说明 14788074
捐赠科研通 4625624
什么是DOI,文献DOI怎么找? 2531873
邀请新用户注册赠送积分活动 1500436
关于科研通互助平台的介绍 1468324