Identification of immune-related gene signatures for chronic obstructive pulmonary disease with metabolic syndrome: evidence from integrated bulk and single-cell RNA sequencing data

慢性阻塞性肺病 免疫系统 基因 生物 免疫学 疾病 先天免疫系统 肺病 计算生物学 医学 遗传学 内科学
作者
Yueren Wu,Mengyu Ma,Wenglam Choi,Weifang Xu,Jingcheng Dong
出处
期刊:International Immunology [Oxford University Press]
标识
DOI:10.1093/intimm/dxad043
摘要

Abstract Chronic obstructive pulmonary disease (COPD) is closely related to innate and adaptive inflammatory immune responses. It is increasingly becoming evident that metabolic syndrome (MetS) affects a significant portion of COPD patients. Through this investigation, we identify shared immune-related candidate biological markers. The Weighted Gene Co-Expression Network Analysis (WGCNA) was utilized to reveal the co-expression modules linked to COPD and MetS. The commonly expressed genes in the COPD and MetS were utilized to conduct an enrichment analysis. We adopted machine-learning to screen and validate hub genes. We also assessed the relationship between hub genes and immune cell infiltration in COPD and MetS, respectively. Moreover, associations across hub genes and metabolic pathways were also explored. Finally, we chose a single-cell RNA sequencing (scRNA-seq) dataset to investigate the hub genes and shared mechanisms at the level of the cells. We also applied cell trajectory analysis and cell–cell communication analysis to focus on the vital immune cell we were interested in. As a result, we selected and validated 13 shared hub genes for COPD and MetS. The enrichment analysis and immune infiltration analysis illustrated strong associations between hub genes and immunology. Additionally, we applied metabolic pathway enrichment analysis, indicating the significant role of reactive oxygen species (ROS) in COPD with MetS. Through scRNA-seq analysis, we found that ROS might accumulate the most in the alveolar macrophages. In conclusion, the 13 hub genes related to the immune response and metabolism may serve as diagnostic biomarkers and treatment targets of COPD with MetS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助树池采纳,获得10
2秒前
酷波er应助漂亮的素采纳,获得10
2秒前
kk发布了新的文献求助10
3秒前
4秒前
4秒前
sunshitao发布了新的文献求助10
5秒前
顾矜应助努力飞的麻雀采纳,获得10
5秒前
iiiiii发布了新的文献求助10
6秒前
7秒前
pagoda完成签到,获得积分10
7秒前
李健应助77777采纳,获得10
8秒前
8秒前
哐哐哐铛发布了新的文献求助10
10秒前
11秒前
Cc完成签到,获得积分10
12秒前
Hello应助小鱼采纳,获得10
12秒前
12秒前
Singularity应助孙兆杰采纳,获得10
12秒前
Singularity应助狂野电源采纳,获得10
13秒前
Hello应助嘻嘻采纳,获得10
13秒前
13秒前
孙宏完成签到,获得积分20
14秒前
14秒前
15秒前
16秒前
wear88发布了新的文献求助10
16秒前
无花果应助cjc采纳,获得10
17秒前
葡萄成熟应助巴西琉斯采纳,获得10
18秒前
漂亮的素发布了新的文献求助10
20秒前
追寻的梦凡完成签到 ,获得积分10
20秒前
ccc完成签到,获得积分10
22秒前
22秒前
坐看云起发布了新的文献求助10
24秒前
搜集达人应助zyp采纳,获得10
24秒前
wear88完成签到,获得积分10
26秒前
Troye发布了新的文献求助10
27秒前
FashionBoy应助漂亮的素采纳,获得10
27秒前
28秒前
凌依萱完成签到 ,获得积分10
28秒前
29秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141752
求助须知:如何正确求助?哪些是违规求助? 2792736
关于积分的说明 7804057
捐赠科研通 2449017
什么是DOI,文献DOI怎么找? 1303050
科研通“疑难数据库(出版商)”最低求助积分说明 626718
版权声明 601260