Identification of immune-related gene signatures for chronic obstructive pulmonary disease with metabolic syndrome: evidence from integrated bulk and single-cell RNA sequencing data

慢性阻塞性肺病 免疫系统 基因 生物 免疫学 疾病 先天免疫系统 肺病 计算生物学 医学 遗传学 内科学
作者
Yueren Wu,Mengyu Ma,Wenglam Choi,Weifang Xu,Jingcheng Dong
出处
期刊:International Immunology [Oxford University Press]
标识
DOI:10.1093/intimm/dxad043
摘要

Abstract Chronic obstructive pulmonary disease (COPD) is closely related to innate and adaptive inflammatory immune responses. It is increasingly becoming evident that metabolic syndrome (MetS) affects a significant portion of COPD patients. Through this investigation, we identify shared immune-related candidate biological markers. The Weighted Gene Co-Expression Network Analysis (WGCNA) was utilized to reveal the co-expression modules linked to COPD and MetS. The commonly expressed genes in the COPD and MetS were utilized to conduct an enrichment analysis. We adopted machine-learning to screen and validate hub genes. We also assessed the relationship between hub genes and immune cell infiltration in COPD and MetS, respectively. Moreover, associations across hub genes and metabolic pathways were also explored. Finally, we chose a single-cell RNA sequencing (scRNA-seq) dataset to investigate the hub genes and shared mechanisms at the level of the cells. We also applied cell trajectory analysis and cell–cell communication analysis to focus on the vital immune cell we were interested in. As a result, we selected and validated 13 shared hub genes for COPD and MetS. The enrichment analysis and immune infiltration analysis illustrated strong associations between hub genes and immunology. Additionally, we applied metabolic pathway enrichment analysis, indicating the significant role of reactive oxygen species (ROS) in COPD with MetS. Through scRNA-seq analysis, we found that ROS might accumulate the most in the alveolar macrophages. In conclusion, the 13 hub genes related to the immune response and metabolism may serve as diagnostic biomarkers and treatment targets of COPD with MetS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiao应助小吴采纳,获得10
刚刚
西溪完成签到 ,获得积分10
刚刚
1秒前
pi发布了新的文献求助10
2秒前
hunting发布了新的文献求助10
2秒前
2秒前
jujijuji应助Anquan采纳,获得10
2秒前
3秒前
3秒前
bkagyin应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
王黎应助科研通管家采纳,获得30
5秒前
李爱国应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
Neko应助科研通管家采纳,获得20
6秒前
6秒前
JiangHb完成签到,获得积分10
7秒前
8秒前
8秒前
Jian发布了新的文献求助20
8秒前
lingjuanwu发布了新的文献求助10
8秒前
南鸢完成签到 ,获得积分10
9秒前
今后应助wbn1212采纳,获得10
9秒前
光电彭于晏完成签到,获得积分10
9秒前
丰盛的煎饼应助LiShin采纳,获得10
10秒前
大胆的凡儿完成签到 ,获得积分10
10秒前
蝴蝶发布了新的文献求助10
14秒前
槐序发布了新的文献求助10
16秒前
16秒前
陶醉晓凡关注了科研通微信公众号
17秒前
爱学习的小菜鸡完成签到,获得积分10
18秒前
18秒前
22秒前
取法乎上完成签到 ,获得积分10
22秒前
xiaozheng完成签到,获得积分10
24秒前
情怀应助一朵小鲜花儿采纳,获得10
28秒前
海鲜汤完成签到 ,获得积分10
28秒前
29秒前
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851