Multi-objective based unbiased community identification in dynamic social networks

计算机科学 节点(物理) GSM演进的增强数据速率 鉴定(生物学) 不相交集 数据挖掘 集合(抽象数据类型) 群落结构 动态网络分析 质量(理念) 算法 人工智能 数学 计算机网络 植物 生物 哲学 结构工程 认识论 组合数学 工程类 程序设计语言
作者
Shivansh Mishra,Shashank Sheshar Singh,Shivansh Mishra,Bhaskar Biswas
出处
期刊:Computer Communications [Elsevier]
卷期号:214: 18-32 被引量:1
标识
DOI:10.1016/j.comcom.2023.11.021
摘要

A network is a topological arrangement of its two basic elements, nodes and edges. Networks in the real world are not static. They tend to evolve with time, causing the set of nodes and edges to alter as well. They consist of several hidden bits of data whose analysis have drawn significant research interest. Identifying groups of similar nodes or edges helps in gaining knowledge about their interaction patterns. These groups are known as communities, which can be disjoint or overlapping. The dynamic nature of the network also impact its current community structure and makes it difficult to keep track of them. The paper presents a multi-objective optimization approach for identifying community structure in a dynamic network. A network is considered as a series of events generated over time, where each event is a new edge introduced at a time. The proposed algorithm uses three objective functions that are inspired from network properties. The community of a node corresponding to an input edge is updated by an algorithm based on its newness. The algorithm uses the Pareto front principle to identify the optimal community. The algorithm is evaluated over 12 datasets and compared to 10 state-of-the-art algorithms. It shows superior performance on real and connected datasets and also performs well for disconnected datasets. The algorithm is evaluated using both accuracy and quality metrics, with the quality metrics slightly outweighing the accuracy metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
田様应助单纯的思松采纳,获得30
1秒前
2秒前
xia完成签到,获得积分10
4秒前
小马甲应助白蓝红采纳,获得10
4秒前
shancai发布了新的文献求助10
5秒前
呆萌惜梦完成签到 ,获得积分10
5秒前
5秒前
家稚晴完成签到,获得积分10
9秒前
csj完成签到,获得积分10
9秒前
9秒前
10秒前
aaaacc发布了新的文献求助30
11秒前
11秒前
shancai完成签到,获得积分10
14秒前
格非完成签到,获得积分10
14秒前
KeYang完成签到,获得积分10
14秒前
14秒前
永恒完成签到 ,获得积分10
14秒前
闪闪龙猫应助科研通管家采纳,获得10
15秒前
orixero应助科研通管家采纳,获得10
15秒前
李健应助科研通管家采纳,获得10
15秒前
闪闪龙猫应助科研通管家采纳,获得10
15秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
闪闪龙猫应助科研通管家采纳,获得10
15秒前
16秒前
Unicorn发布了新的文献求助10
16秒前
16秒前
18秒前
笑点低的白莲完成签到,获得积分10
18秒前
aaaacc完成签到,获得积分20
21秒前
22秒前
领导范儿应助梨子采纳,获得10
22秒前
SciGPT应助想发sci采纳,获得30
24秒前
tracy完成签到,获得积分10
27秒前
28秒前
研友_VZG7GZ应助後知後孓采纳,获得10
28秒前
30秒前
丰知然应助jzh6666采纳,获得10
31秒前
来栖完成签到 ,获得积分10
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312233
求助须知:如何正确求助?哪些是违规求助? 2944813
关于积分的说明 8521583
捐赠科研通 2620532
什么是DOI,文献DOI怎么找? 1432912
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650131