X射线光电子能谱
阴极
扫描电子显微镜
傅里叶变换红外光谱
拉曼光谱
循环伏安法
分析化学(期刊)
X射线吸收光谱法
材料科学
同步加速器
电化学
化学
化学工程
吸收光谱法
电极
复合材料
物理化学
光学
有机化学
工程类
物理
作者
Burcu Kalyoncuoglu,Metin Özgül,Sebahat Altundağ,Messaoud Harfouche,Erdinç Öz,Sevda Avcı,Xiaobo Ji,S. Altın,Mehmet Nurullah Ateş
标识
DOI:10.1016/j.jpowsour.2023.233775
摘要
In this study, we unravel the effect of Ni doping on the half-cell and full-cell performances of the Na0.67Mn0.5-xNixFe0.43Ti0.07O2 cathode materials where x varies between 0.02 and 0.1. The cyclic voltammetry (CV) analysis of the half-cells is performed at 10 °C, room temperature (RT), and 50 °C to elucidate the redox reaction mechanisms at different temperatures. Among the studied cathodes, the highest specific capacity is obtained fox = 0.06 which delivered a specific capacity of 186 mAh g−1 at C/3-rate. The full cell of Na0.67Mn0.44Ni0.06Fe0.43Ti0.07O2/hard carbon couple is assembled in coin cell format and the specific capacity of the cell at C/2, 1C, and 2C rates are found as 153 mAh g−1, 125 mAh g−1 and 120 mAh g−1, respectively. At the C/2-rate, the excellent capacity retention of the full cell is around 70% after 500 cycles delivering a specific capacity of 103 mAh g−1. Along with the conventional physicochemical characterization methods such as X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Raman and Fourier-transform Infrared Spectroscopies (FTIR), we also utilize X-ray photoelectron spectroscopy (XPS) to bridge the nexus between the performance and the structure properties of the studied materials. Furthermore, we also employ synchrotron-based X-ray Absorption (XAS) to understand the local geometry of the optimized cathode materials in operando.
科研通智能强力驱动
Strongly Powered by AbleSci AI