异质结
光催化
激进的
降级(电信)
可见光谱
四环素
材料科学
半导体
光化学
化学工程
化学
纳米技术
光电子学
催化作用
有机化学
工程类
电信
生物化学
抗生素
计算机科学
作者
Jinhong Liu,Beibei Zhang,Ziyue Huang,Wuyou Wang,Xinguo Xi,Pengyu Dong
出处
期刊:Langmuir
[American Chemical Society]
日期:2023-11-21
卷期号:39 (48): 17458-17470
被引量:6
标识
DOI:10.1021/acs.langmuir.3c02706
摘要
The construction of Z-scheme heterostructures using matching band semiconductors is an effective strategy for producing highly efficient photocatalysts. In this study, MgIn2S4(MIS) was grown in situ on In2O3 microrods created with an In-based MOF material (In-MIL-68) as a template to successfully establish a unique MIS-In2O3 heterojunction with a well-matched Z-scheme interface charge transfer channel. Tetracycline (TC) as a typical antibiotic was chosen as the target pollutant to evaluate the photocatalytic activity. After 120 min of visible light irradiation, the MIS-In2O3-(10:1) material had the greatest photocatalytic degradation activity of tetracycline with 96.55%, which was 2.39 and 4.26 times that of MIS and In2O3, respectively. The improved photocatalytic activity is attributed to the in situ growth of MIS on In2O3, forming a Z-scheme heterojunction at the interface, which not only increases the specific surface area, exposes the abundant active site, and improves light utilization but also facilitates the migration and separation of photogenic carriers. The photocatalytic degradation products of TC were detected by liquid chromatography-mass spectrometry (LC-MS), and a preliminary degradation pathway was proposed. Radical capture experiments and ESR analysis confirmed that the main active species were holes (h+), superoxide radicals (•O2-), and superoxide and hydroxyl radicals (•OH). Finally, combined with band position analysis, this study proposes a direct Z-scheme heterojunction mechanism to improve the photocatalytic degradation of tetracycline in MIS under visible light.
科研通智能强力驱动
Strongly Powered by AbleSci AI