A Machine Olfaction-Based Overheating Diagnosis Method for Electrical Equipment

过热(电) 计算机科学 电气设备 主成分分析 预警系统 支持向量机 人工神经网络 模式识别(心理学) 人工智能 工程类 电气工程 电信
作者
Yuxin Bao,Zhenghang Wang,Jingyi Yang,Dawei Chen,Shiyi Jing,Mingzhe Wu,Qiwei Lu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 108804-108817 被引量:1
标识
DOI:10.1109/access.2023.3320714
摘要

Achieving early warning of electrical fires is of great importance in preventing their occurrence. The overheating diagnosis of electrical equipment by detecting volatiles is an effective way to achieve early warning of electrical fires. This paper proposes a machine olfaction-based overheating diagnosis method for electrical equipment. First, the primary materials commonly used for non-metallic elements in electrical equipment are determined. Second, a semiconductor oxide sensor array is designed based on the volatiles generated by these materials during overheating. Next, the output curves of the sensor array at different heating temperatures for these materials are obtained through experiments. Subsequently, the output data of the sensor array at multiple moments in the period of each output curve entering the plateau are extracted to construct the output vectors of the sensor array. Then, the Principal Component Analysis (PCA) algorithm and Linear Discriminant Analysis (LDA) algorithm are used to extract the characteristic quantities in the output vectors to construct the feature vectors. Finally, a second-order BP neural network model is designed based on the feature vector to determine whether the electrical equipment is overheated and what the overheated material is. The experimental results show that the accuracy of the proposed overheating diagnosis method can reach 94.58%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助balalal采纳,获得10
刚刚
gxmu6322发布了新的文献求助10
刚刚
故意的冰烟关注了科研通微信公众号
1秒前
昨日长河发布了新的文献求助10
2秒前
2秒前
yx阿聪完成签到,获得积分10
2秒前
吕婉婉给吕婉婉的求助进行了留言
3秒前
6秒前
今后应助皮皮蛙采纳,获得10
7秒前
忧郁绝音发布了新的文献求助10
8秒前
9秒前
茶巽完成签到,获得积分10
9秒前
siqi47发布了新的文献求助60
11秒前
上官若男应助昨日长河采纳,获得10
13秒前
cc完成签到,获得积分10
14秒前
14秒前
14秒前
14秒前
16秒前
默默的斑马完成签到,获得积分10
16秒前
忧郁绝音完成签到,获得积分10
17秒前
陌路孤星发布了新的文献求助10
17秒前
kelaibing完成签到,获得积分10
19秒前
Huang完成签到,获得积分20
20秒前
谦让的樱发布了新的文献求助10
21秒前
英姑应助南顾笙烟采纳,获得10
22秒前
22秒前
24秒前
昨日长河完成签到,获得积分10
24秒前
25秒前
25秒前
000完成签到,获得积分10
25秒前
25秒前
彭于晏应助云_123采纳,获得10
26秒前
遂安完成签到,获得积分10
26秒前
27秒前
27秒前
bjjtdx1997发布了新的文献求助10
28秒前
搜集达人应助wenxianxiazai123采纳,获得10
29秒前
爆米花应助霜叶采纳,获得10
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461678
求助须知:如何正确求助?哪些是违规求助? 3055353
关于积分的说明 9047590
捐赠科研通 2745170
什么是DOI,文献DOI怎么找? 1506011
科研通“疑难数据库(出版商)”最低求助积分说明 695973
邀请新用户注册赠送积分活动 695380