Enhancing luciferase activity and stability through generative modeling of natural enzyme sequences

蛋白质工程 定向进化 定向分子进化 计算生物学 荧光素酶 合成生物学 生成模型 生成语法 序列空间 蛋白质设计 计算机科学 生物 突变体 人工智能 生物化学 蛋白质结构 基因 数学 转染 纯数学 巴拿赫空间
作者
Wen Jun Xie,Dangliang Liu,Xiaoya Wang,Aoxuan Zhang,Qijia Wei,Ashim Nandi,Suwei Dong,Arieh Warshel
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:120 (48) 被引量:6
标识
DOI:10.1073/pnas.2312848120
摘要

The availability of natural protein sequences synergized with generative AI provides new paradigms to engineer enzymes. Although active enzyme variants with numerous mutations have been designed using generative models, their performance often falls short of their wild type counterparts. Additionally, in practical applications, choosing fewer mutations that can rival the efficacy of extensive sequence alterations is usually more advantageous. Pinpointing beneficial single mutations continues to be a formidable task. In this study, using the generative maximum entropy model to analyze Renilla luciferase (RLuc) homologs, and in conjunction with biochemistry experiments, we demonstrated that natural evolutionary information could be used to predictively improve enzyme activity and stability by engineering the active center and protein scaffold, respectively. The success rate to improve either luciferase activity or stability of designed single mutants is ~50%. This finding highlights nature's ingenious approach to evolving proficient enzymes, wherein diverse evolutionary pressures are preferentially applied to distinct regions of the enzyme, ultimately culminating in an overall high performance. We also reveal an evolutionary preference in RLuc toward emitting blue light that holds advantages in terms of water penetration compared to other light spectra. Taken together, our approach facilitates navigation through enzyme sequence space and offers effective strategies for computer-aided rational enzyme engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liutengfei123发布了新的文献求助10
刚刚
1秒前
橙橙橙橙橙子完成签到,获得积分20
1秒前
1秒前
2秒前
2秒前
天天快乐应助宋浩然采纳,获得10
2秒前
3秒前
MC.SU发布了新的文献求助10
3秒前
lll发布了新的文献求助10
4秒前
Hello应助三点一共采纳,获得10
4秒前
wanci应助噜啦噜啦采纳,获得10
4秒前
5秒前
5秒前
傻傻的乌冬面完成签到,获得积分10
5秒前
6秒前
搜集达人应助冷漠的布丁采纳,获得10
6秒前
Antigen发布了新的文献求助30
7秒前
7秒前
大力荷花发布了新的文献求助10
7秒前
香蕉觅云应助谦让的傲芙采纳,获得10
8秒前
烟花应助韭菜何子采纳,获得10
8秒前
he完成签到,获得积分10
9秒前
9秒前
彭日晓发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
11秒前
skyangar发布了新的文献求助10
12秒前
12秒前
youhao6a发布了新的文献求助10
12秒前
12秒前
12秒前
爆米花应助雨点采纳,获得10
13秒前
Sunsky发布了新的文献求助10
13秒前
13秒前
yang发布了新的文献求助10
13秒前
小榆应助lll采纳,获得10
14秒前
ttnnn完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958843
求助须知:如何正确求助?哪些是违规求助? 3505092
关于积分的说明 11122284
捐赠科研通 3236543
什么是DOI,文献DOI怎么找? 1788854
邀请新用户注册赠送积分活动 871424
科研通“疑难数据库(出版商)”最低求助积分说明 802788