Automatic Hemiplegia Gait Assessment for Post-Stroke by an Efficient Hybrid Attention-Based GhostNet

计算机科学 判别式 卷积神经网络 过度拟合 步态 人工智能 瓶颈 深度学习 冲程(发动机) 物理医学与康复 模式识别(心理学) 机器学习 人工神经网络 医学 嵌入式系统 机械工程 工程类
作者
Chengju Zhou,Daqin Feng,Lewei He,Nianming Ban,Shuxi Wang,Jiahui Pan
标识
DOI:10.1109/ijcnn54540.2023.10191874
摘要

Vision-based gait analysis provides the possibility to automatically and unobtrusively detect walking pattern alterations caused by stoke. Therefore, it can be used to determine the severity of stroke during stroke rehabilitation outside the hospital, which greatly releases the economic and labor burden on patients and their families. However, state-of-the-art deep learning algorithms for gait analysis usually suffer from high computational complexity and can even lead to overfitting problems on small-scale pathological gait datasets. To realize an efficient and effective system, we constructed a specially designed dataset and proposed a novel lightweight network to lean discriminative gait representation to map the input into one of the stroke severity levels. More specifically, a simulated hemiplegia gait dataset with multiple severity levels is first constructed, including sufficient 2D image sequences collected from 14 subjects. Different from the existing pathological datasets used for coarse classification, which only distinguish different pathological gait types, our proposed dataset is specifically designed for fine classification to assess the severity of hemiplegia that is defined according to medical prior. Second, considering that pathological datasets are usually small-scale, an attention-based lightweight network is proposed. In detail, a lightweight hybrid attention module (LHAM) based on the 1D adaptive convolution for channel attention interaction was developed to enhance the network's ability to integrate and focus on meaningful spatial and channel features. To further lighten the networks, a proposed efficient ghost module (EGM) is used in the bottleneck structure instead of the normal convolutional layer. Extensive experiments on both self-constructed and publicly available datasets demonstrate that the proposed efficient hybrid attention-based GhostNet realizes an effective and efficient gait analysis for stroke rehabilitation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PeterParker发布了新的文献求助10
刚刚
乐生发布了新的文献求助10
1秒前
可靠愫完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
orixero应助龙虾采纳,获得10
3秒前
安氏月月完成签到,获得积分10
3秒前
克丽发布了新的文献求助10
3秒前
3秒前
4秒前
犯困小黄人完成签到,获得积分10
4秒前
简单的凝蕊完成签到,获得积分20
4秒前
4秒前
杨昊完成签到 ,获得积分10
4秒前
5秒前
蒋依伶完成签到,获得积分20
5秒前
嘟嘟发布了新的文献求助10
5秒前
Youngman完成签到,获得积分10
6秒前
6秒前
乐生完成签到,获得积分10
7秒前
robi发布了新的文献求助10
7秒前
李健应助jam采纳,获得10
7秒前
Lucifer2012发布了新的文献求助10
7秒前
8秒前
8秒前
烟花应助小小采纳,获得10
8秒前
必发Nature完成签到,获得积分10
9秒前
饱满凌萱发布了新的文献求助10
9秒前
酷波er应助joy采纳,获得10
9秒前
可靠愫发布了新的文献求助10
10秒前
之荷完成签到,获得积分10
10秒前
Cathay发布了新的文献求助10
11秒前
11秒前
充电宝应助虚心十三采纳,获得10
11秒前
CipherSage应助iYA采纳,获得10
11秒前
11秒前
哈呵嚯嘿呀完成签到,获得积分10
11秒前
kk完成签到,获得积分20
12秒前
12秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3053115
求助须知:如何正确求助?哪些是违规求助? 2710358
关于积分的说明 7421333
捐赠科研通 2354967
什么是DOI,文献DOI怎么找? 1246568
科研通“疑难数据库(出版商)”最低求助积分说明 606146
版权声明 595975