Automatic Hemiplegia Gait Assessment for Post-Stroke by an Efficient Hybrid Attention-Based GhostNet

计算机科学 判别式 卷积神经网络 过度拟合 步态 人工智能 瓶颈 深度学习 冲程(发动机) 物理医学与康复 模式识别(心理学) 机器学习 人工神经网络 医学 嵌入式系统 机械工程 工程类
作者
Chengju Zhou,Daqin Feng,Lewei He,Nianming Ban,Shuxi Wang,Jiahui Pan
标识
DOI:10.1109/ijcnn54540.2023.10191874
摘要

Vision-based gait analysis provides the possibility to automatically and unobtrusively detect walking pattern alterations caused by stoke. Therefore, it can be used to determine the severity of stroke during stroke rehabilitation outside the hospital, which greatly releases the economic and labor burden on patients and their families. However, state-of-the-art deep learning algorithms for gait analysis usually suffer from high computational complexity and can even lead to overfitting problems on small-scale pathological gait datasets. To realize an efficient and effective system, we constructed a specially designed dataset and proposed a novel lightweight network to lean discriminative gait representation to map the input into one of the stroke severity levels. More specifically, a simulated hemiplegia gait dataset with multiple severity levels is first constructed, including sufficient 2D image sequences collected from 14 subjects. Different from the existing pathological datasets used for coarse classification, which only distinguish different pathological gait types, our proposed dataset is specifically designed for fine classification to assess the severity of hemiplegia that is defined according to medical prior. Second, considering that pathological datasets are usually small-scale, an attention-based lightweight network is proposed. In detail, a lightweight hybrid attention module (LHAM) based on the 1D adaptive convolution for channel attention interaction was developed to enhance the network's ability to integrate and focus on meaningful spatial and channel features. To further lighten the networks, a proposed efficient ghost module (EGM) is used in the bottleneck structure instead of the normal convolutional layer. Extensive experiments on both self-constructed and publicly available datasets demonstrate that the proposed efficient hybrid attention-based GhostNet realizes an effective and efficient gait analysis for stroke rehabilitation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水博士发布了新的文献求助10
1秒前
2秒前
小幸运完成签到,获得积分10
2秒前
专一发布了新的文献求助10
2秒前
3秒前
懒癌晚期完成签到,获得积分10
4秒前
tgoutgou完成签到,获得积分10
4秒前
4秒前
Greeking发布了新的文献求助10
5秒前
6秒前
6秒前
隐形冷亦完成签到 ,获得积分10
6秒前
高万发布了新的文献求助10
8秒前
Lucas应助will采纳,获得10
8秒前
MishimaErika发布了新的文献求助40
9秒前
共享精神应助专一采纳,获得10
9秒前
11完成签到 ,获得积分10
10秒前
标致惋庭发布了新的文献求助10
10秒前
10秒前
好远的梦完成签到,获得积分10
11秒前
chenjingjing发布了新的文献求助10
12秒前
13秒前
14秒前
007完成签到,获得积分10
15秒前
爆米花应助勤恳的沉鱼采纳,获得10
15秒前
隐形冷亦关注了科研通微信公众号
16秒前
高万完成签到,获得积分10
16秒前
18秒前
Charming完成签到,获得积分10
18秒前
搜集达人应助逝水无痕采纳,获得10
18秒前
bk2020113458完成签到,获得积分10
19秒前
19秒前
Greeking完成签到,获得积分10
20秒前
Jouleken完成签到,获得积分10
20秒前
20秒前
fanfan完成签到 ,获得积分10
21秒前
21秒前
包容的剑完成签到 ,获得积分10
21秒前
汉堡包应助幸福的依瑶采纳,获得10
22秒前
Magic发布了新的文献求助20
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3357363
求助须知:如何正确求助?哪些是违规求助? 2980841
关于积分的说明 8696407
捐赠科研通 2662496
什么是DOI,文献DOI怎么找? 1457911
科研通“疑难数据库(出版商)”最低求助积分说明 674921
邀请新用户注册赠送积分活动 665943