Automatic Hemiplegia Gait Assessment for Post-Stroke by an Efficient Hybrid Attention-Based GhostNet

计算机科学 判别式 卷积神经网络 过度拟合 步态 人工智能 瓶颈 深度学习 冲程(发动机) 物理医学与康复 模式识别(心理学) 机器学习 人工神经网络 医学 工程类 嵌入式系统 机械工程
作者
Chengju Zhou,Daqin Feng,Lewei He,Nianming Ban,Shuxi Wang,Jiahui Pan
标识
DOI:10.1109/ijcnn54540.2023.10191874
摘要

Vision-based gait analysis provides the possibility to automatically and unobtrusively detect walking pattern alterations caused by stoke. Therefore, it can be used to determine the severity of stroke during stroke rehabilitation outside the hospital, which greatly releases the economic and labor burden on patients and their families. However, state-of-the-art deep learning algorithms for gait analysis usually suffer from high computational complexity and can even lead to overfitting problems on small-scale pathological gait datasets. To realize an efficient and effective system, we constructed a specially designed dataset and proposed a novel lightweight network to lean discriminative gait representation to map the input into one of the stroke severity levels. More specifically, a simulated hemiplegia gait dataset with multiple severity levels is first constructed, including sufficient 2D image sequences collected from 14 subjects. Different from the existing pathological datasets used for coarse classification, which only distinguish different pathological gait types, our proposed dataset is specifically designed for fine classification to assess the severity of hemiplegia that is defined according to medical prior. Second, considering that pathological datasets are usually small-scale, an attention-based lightweight network is proposed. In detail, a lightweight hybrid attention module (LHAM) based on the 1D adaptive convolution for channel attention interaction was developed to enhance the network's ability to integrate and focus on meaningful spatial and channel features. To further lighten the networks, a proposed efficient ghost module (EGM) is used in the bottleneck structure instead of the normal convolutional layer. Extensive experiments on both self-constructed and publicly available datasets demonstrate that the proposed efficient hybrid attention-based GhostNet realizes an effective and efficient gait analysis for stroke rehabilitation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
unovember完成签到,获得积分20
1秒前
大方忆秋完成签到 ,获得积分10
1秒前
雷锋发布了新的文献求助10
2秒前
2秒前
无花果应助夏日的极光采纳,获得30
4秒前
quhayley应助HYX采纳,获得30
4秒前
5秒前
ding应助Marita采纳,获得10
5秒前
悦耳的镜子完成签到,获得积分20
5秒前
htm426发布了新的文献求助10
6秒前
6秒前
6秒前
keyanqianjin发布了新的文献求助10
7秒前
神勇的晟睿完成签到 ,获得积分10
7秒前
Ava应助sensen采纳,获得10
7秒前
Haa完成签到 ,获得积分10
8秒前
美满的若风完成签到,获得积分10
9秒前
Hello应助Wang采纳,获得10
9秒前
Ava应助intume采纳,获得10
10秒前
九龙飞翔发布了新的文献求助10
11秒前
Maggie完成签到,获得积分10
12秒前
12秒前
dian完成签到 ,获得积分10
12秒前
正直凌文发布了新的文献求助10
13秒前
天真的大象完成签到,获得积分10
14秒前
愉快的花卷完成签到,获得积分10
14秒前
14秒前
在水一方应助核桃采纳,获得10
16秒前
tuanhust应助核桃采纳,获得50
16秒前
希望天下0贩的0应助核桃采纳,获得10
16秒前
星辰大海应助核桃采纳,获得10
16秒前
乐乐应助核桃采纳,获得20
17秒前
NexusExplorer应助核桃采纳,获得10
17秒前
17秒前
ZZ完成签到,获得积分10
17秒前
gy发布了新的文献求助10
19秒前
20秒前
xinyingking完成签到,获得积分10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954299
求助须知:如何正确求助?哪些是违规求助? 3500338
关于积分的说明 11099026
捐赠科研通 3230828
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801651