亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic Hemiplegia Gait Assessment for Post-Stroke by an Efficient Hybrid Attention-Based GhostNet

计算机科学 判别式 卷积神经网络 过度拟合 步态 人工智能 瓶颈 深度学习 冲程(发动机) 物理医学与康复 模式识别(心理学) 机器学习 人工神经网络 医学 嵌入式系统 机械工程 工程类
作者
Chengju Zhou,Daqin Feng,Lewei He,Nianming Ban,Shuxi Wang,Jiahui Pan
标识
DOI:10.1109/ijcnn54540.2023.10191874
摘要

Vision-based gait analysis provides the possibility to automatically and unobtrusively detect walking pattern alterations caused by stoke. Therefore, it can be used to determine the severity of stroke during stroke rehabilitation outside the hospital, which greatly releases the economic and labor burden on patients and their families. However, state-of-the-art deep learning algorithms for gait analysis usually suffer from high computational complexity and can even lead to overfitting problems on small-scale pathological gait datasets. To realize an efficient and effective system, we constructed a specially designed dataset and proposed a novel lightweight network to lean discriminative gait representation to map the input into one of the stroke severity levels. More specifically, a simulated hemiplegia gait dataset with multiple severity levels is first constructed, including sufficient 2D image sequences collected from 14 subjects. Different from the existing pathological datasets used for coarse classification, which only distinguish different pathological gait types, our proposed dataset is specifically designed for fine classification to assess the severity of hemiplegia that is defined according to medical prior. Second, considering that pathological datasets are usually small-scale, an attention-based lightweight network is proposed. In detail, a lightweight hybrid attention module (LHAM) based on the 1D adaptive convolution for channel attention interaction was developed to enhance the network's ability to integrate and focus on meaningful spatial and channel features. To further lighten the networks, a proposed efficient ghost module (EGM) is used in the bottleneck structure instead of the normal convolutional layer. Extensive experiments on both self-constructed and publicly available datasets demonstrate that the proposed efficient hybrid attention-based GhostNet realizes an effective and efficient gait analysis for stroke rehabilitation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wl发布了新的文献求助10
12秒前
12秒前
46秒前
圈地自萌X完成签到 ,获得积分20
1分钟前
饭团0814完成签到,获得积分10
1分钟前
jyy发布了新的文献求助20
1分钟前
Sunsets发布了新的文献求助30
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
图图发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
图图完成签到,获得积分10
2分钟前
3分钟前
3分钟前
小宋发布了新的文献求助10
3分钟前
清秀翠风发布了新的文献求助10
3分钟前
南歌子完成签到 ,获得积分10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
小宋完成签到,获得积分20
3分钟前
大个应助演员的太阳采纳,获得10
3分钟前
3分钟前
HYQ完成签到 ,获得积分10
3分钟前
gzwhh发布了新的文献求助10
3分钟前
Lucas应助gzwhh采纳,获得10
4分钟前
然463完成签到 ,获得积分10
4分钟前
4分钟前
daixan89完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
qin完成签到 ,获得积分10
5分钟前
TEMPO发布了新的文献求助10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
狂野丹翠应助科研通管家采纳,获得10
5分钟前
演员的太阳完成签到,获得积分20
5分钟前
ppg123应助白天亮采纳,获得10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714995
求助须知:如何正确求助?哪些是违规求助? 5229079
关于积分的说明 15273941
捐赠科研通 4866106
什么是DOI,文献DOI怎么找? 2612682
邀请新用户注册赠送积分活动 1562873
关于科研通互助平台的介绍 1520157