生物反应器
发酵
谷氨酸棒杆菌
曝气
化学
色谱法
生物化学
有机化学
基因
作者
Gang Ma,Wei Zhao,Qingguo Liu,Chunjiang Zhao,Yunling Zou,Nan Zhao,Dong Liu,Hanjie Ying,Wenjun Sun,Yong Chen
标识
DOI:10.1007/s00253-022-12103-w
摘要
Biofilm-immobilized fermentation is a novel strategy that has been utilized in L-lysine fermentation. In this study, we describe a strategy for designing bioreactors for immobilized fermentation. We have constructed steel structures in which the carriers can be sewn, forming several star-like structures with different angles, and changing the ventilation robot to the aeration tray. In a 10-L bioreactor, this structure with 12 angles assisted the immobilized system to remedy the gap between free-cell and immobilized fermentation in the conversion rate. In a 50-L bioreactor, this enlarged structure with 16 angles illustrated a 4.61% higher conversion rate than the free-cell fermentation (67.75%) and increased the production by 28.56%. This successful case is the first step towards to industrial production of biofilm-based immobilized fermentation. Key points • The designed steel structure is useful for L-lysine immobilized fermentation in a 10-L bioreactor.• The conversion rate of immobilized fermentation increased from 13.99 to 60.07% and is 1.03% higher than that of the free-cell fermentation.• The conversion rate of the redesigned 50-L bioreactor is higher than that of free-cell fermentation.
科研通智能强力驱动
Strongly Powered by AbleSci AI