Optimized pollard route deviation and route selection using Bayesian machine learning techniques in wireless sensor networks

计算机科学 路由协议 无线传感器网络 布线(电子设计自动化) 传输(电信) 标准差 选择(遗传算法) 实时计算 机器学习 计算机网络 电信 统计 数学
作者
C.N. Vanitha,S. Malathy,Rajesh Kumar Dhanaraj,Anand Nayyar
出处
期刊:Computer Networks [Elsevier]
卷期号:216: 109228-109228 被引量:28
标识
DOI:10.1016/j.comnet.2022.109228
摘要

Optimal route selection and circumventing the route deviation is essential in sensor transmission to reach the destination properly and to save energy in sensors. Wireless sensor networks (WSNs) play an indispensable role to achieve faster communication. Sensors are tiny devices which can store less power and need the power to be retained until final communication. The main need is to achieve routing of the sensors while performing the data transmission should be taken care. Optimal routing technique is necessitated to transfer data from sensors in the clusters and to the central station. The main focus is to dwindle the battery power consumption and increase the network life time. In this proposed work, the route deviation is pollard by Bayesian machine learning technique which uses the posterior distribution incrementally when new evidence is occurred. The approach calculates the conditional probability using the prior knowledge to determine the route deviation and optimal route. The methodology mainly focuses on parameters like, end-to-end delay, detection of route deviation, optimal route selection and network life time. The experimental results of proposed Optimal Pollard Route Deviation using Bayesian (OPDB) protocol focuses on the evaluation metrics of machine learning algorithm in terms of accuracy and error rate. The proposed algorithm is 28.5% better in minimizing the route deviation, 86.67% improved route selection, delay is very much minimized up to 07.12% and the 93.87% improved network life time compared with other routing algorithms. The route deviation detection is 14.5% improved, optimal route selection is improved by 31.84%, delay is minimized by 20.32% and network lifetime is increased by15.24% while using the OPDB algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
SMZ应助王泽坤采纳,获得30
1秒前
量子星尘发布了新的文献求助10
2秒前
ksr8888应助ukulele117采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
在水一方应助YRY采纳,获得10
2秒前
3秒前
hanry发布了新的文献求助10
4秒前
在水一方应助rachel采纳,获得10
4秒前
可口可乐味的大橙子完成签到,获得积分10
5秒前
5秒前
静途完成签到,获得积分10
5秒前
Hello应助沉默的美女采纳,获得10
5秒前
lucky发布了新的文献求助20
5秒前
5秒前
东方树叶发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
7秒前
findforever发布了新的文献求助10
7秒前
Yanwenjun发布了新的文献求助10
7秒前
7秒前
7秒前
观澜发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
8秒前
思源应助科研通管家采纳,获得10
8秒前
华仔应助秋风之墩采纳,获得10
8秒前
Wind应助科研通管家采纳,获得10
9秒前
you完成签到,获得积分10
9秒前
9秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619405
求助须知:如何正确求助?哪些是违规求助? 4704160
关于积分的说明 14926129
捐赠科研通 4759826
什么是DOI,文献DOI怎么找? 2550547
邀请新用户注册赠送积分活动 1513336
关于科研通互助平台的介绍 1474401