Optimized pollard route deviation and route selection using Bayesian machine learning techniques in wireless sensor networks

计算机科学 路由协议 无线传感器网络 布线(电子设计自动化) 传输(电信) 标准差 选择(遗传算法) 实时计算 机器学习 计算机网络 电信 数学 统计
作者
C.N. Vanitha,S. Malathy,Rajesh Kumar Dhanaraj,Anand Nayyar
出处
期刊:Computer Networks [Elsevier BV]
卷期号:216: 109228-109228 被引量:28
标识
DOI:10.1016/j.comnet.2022.109228
摘要

Optimal route selection and circumventing the route deviation is essential in sensor transmission to reach the destination properly and to save energy in sensors. Wireless sensor networks (WSNs) play an indispensable role to achieve faster communication. Sensors are tiny devices which can store less power and need the power to be retained until final communication. The main need is to achieve routing of the sensors while performing the data transmission should be taken care. Optimal routing technique is necessitated to transfer data from sensors in the clusters and to the central station. The main focus is to dwindle the battery power consumption and increase the network life time. In this proposed work, the route deviation is pollard by Bayesian machine learning technique which uses the posterior distribution incrementally when new evidence is occurred. The approach calculates the conditional probability using the prior knowledge to determine the route deviation and optimal route. The methodology mainly focuses on parameters like, end-to-end delay, detection of route deviation, optimal route selection and network life time. The experimental results of proposed Optimal Pollard Route Deviation using Bayesian (OPDB) protocol focuses on the evaluation metrics of machine learning algorithm in terms of accuracy and error rate. The proposed algorithm is 28.5% better in minimizing the route deviation, 86.67% improved route selection, delay is very much minimized up to 07.12% and the 93.87% improved network life time compared with other routing algorithms. The route deviation detection is 14.5% improved, optimal route selection is improved by 31.84%, delay is minimized by 20.32% and network lifetime is increased by15.24% while using the OPDB algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鸭子发布了新的文献求助10
刚刚
刚刚
小邢完成签到,获得积分10
1秒前
1秒前
TCL完成签到,获得积分10
2秒前
oywc应助felix采纳,获得10
2秒前
十一发布了新的文献求助10
2秒前
3秒前
科研通AI2S应助里大炮采纳,获得10
3秒前
世界尽头完成签到,获得积分10
3秒前
4秒前
Herman发布了新的文献求助10
4秒前
科研通AI5应助RR采纳,获得10
4秒前
4秒前
JamesPei应助kou采纳,获得10
5秒前
科研通AI6应助season采纳,获得30
6秒前
浮游应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
JF123_发布了新的文献求助10
7秒前
CipherSage应助科研通管家采纳,获得30
7秒前
充电宝应助科研通管家采纳,获得30
7秒前
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
Akiba完成签到,获得积分10
8秒前
完美世界应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
思源应助科研通管家采纳,获得10
10秒前
852应助科研通管家采纳,获得10
10秒前
Wianiu应助科研通管家采纳,获得10
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215597
求助须知:如何正确求助?哪些是违规求助? 4390701
关于积分的说明 13670504
捐赠科研通 4252590
什么是DOI,文献DOI怎么找? 2333220
邀请新用户注册赠送积分活动 1330838
关于科研通互助平台的介绍 1284652