Optimized pollard route deviation and route selection using Bayesian machine learning techniques in wireless sensor networks

计算机科学 路由协议 无线传感器网络 布线(电子设计自动化) 传输(电信) 标准差 选择(遗传算法) 实时计算 机器学习 计算机网络 电信 统计 数学
作者
C.N. Vanitha,S. Malathy,Rajesh Kumar Dhanaraj,Anand Nayyar
出处
期刊:Computer Networks [Elsevier BV]
卷期号:216: 109228-109228 被引量:28
标识
DOI:10.1016/j.comnet.2022.109228
摘要

Optimal route selection and circumventing the route deviation is essential in sensor transmission to reach the destination properly and to save energy in sensors. Wireless sensor networks (WSNs) play an indispensable role to achieve faster communication. Sensors are tiny devices which can store less power and need the power to be retained until final communication. The main need is to achieve routing of the sensors while performing the data transmission should be taken care. Optimal routing technique is necessitated to transfer data from sensors in the clusters and to the central station. The main focus is to dwindle the battery power consumption and increase the network life time. In this proposed work, the route deviation is pollard by Bayesian machine learning technique which uses the posterior distribution incrementally when new evidence is occurred. The approach calculates the conditional probability using the prior knowledge to determine the route deviation and optimal route. The methodology mainly focuses on parameters like, end-to-end delay, detection of route deviation, optimal route selection and network life time. The experimental results of proposed Optimal Pollard Route Deviation using Bayesian (OPDB) protocol focuses on the evaluation metrics of machine learning algorithm in terms of accuracy and error rate. The proposed algorithm is 28.5% better in minimizing the route deviation, 86.67% improved route selection, delay is very much minimized up to 07.12% and the 93.87% improved network life time compared with other routing algorithms. The route deviation detection is 14.5% improved, optimal route selection is improved by 31.84%, delay is minimized by 20.32% and network lifetime is increased by15.24% while using the OPDB algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月亮发布了新的文献求助10
刚刚
传奇3应助mice33采纳,获得10
1秒前
鲨鱼辣椒完成签到,获得积分10
1秒前
充电宝应助乘风破浪采纳,获得10
1秒前
科研通AI2S应助zanilia采纳,获得10
2秒前
2秒前
善学以致用应助蓝天白云采纳,获得200
2秒前
酷波er应助蓝天白云采纳,获得10
3秒前
烟花应助蓝天白云采纳,获得10
3秒前
赘婿应助蓝天白云采纳,获得10
3秒前
kearthy完成签到,获得积分20
3秒前
量子星尘发布了新的文献求助10
3秒前
小马能发sci完成签到,获得积分10
3秒前
Ava应助科研通管家采纳,获得10
4秒前
夏来应助科研通管家采纳,获得10
4秒前
4秒前
djiwisksk66应助科研通管家采纳,获得20
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
4秒前
情怀应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
1351567822应助科研通管家采纳,获得30
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
smottom应助科研通管家采纳,获得50
5秒前
调皮万宝路完成签到,获得积分10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
所所应助多多发SCI采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
夏来应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
6秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978729
求助须知:如何正确求助?哪些是违规求助? 3522741
关于积分的说明 11214658
捐赠科研通 3260224
什么是DOI,文献DOI怎么找? 1799815
邀请新用户注册赠送积分活动 878676
科研通“疑难数据库(出版商)”最低求助积分说明 807052