降级(电信)
化学
生物降解
聚苯乙烯
微生物
羟基自由基
生物膜
环境化学
细菌
激进的
有机化学
聚合物
计算机科学
遗传学
电信
生物
作者
Xiulin Yang,Jin Chen,Zhi Chen,Yu Zhen,Jingchuan Xue,Tiangang Luan,Shanshan Chen,Shungui Zhou
出处
期刊:Water Research
[Elsevier]
日期:2022-08-13
卷期号:223: 118979-118979
被引量:57
标识
DOI:10.1016/j.watres.2022.118979
摘要
Natural hydroxyl radical (·OH) production, which partially occurs through the microbially driven Fenton reaction, can enhance the degradation of polystyrene microplastics (PS-MPs). However, ·OH causes damage to microorganisms, which might in turn restrain the microbially driven Fenton reaction. Thus, whether PS-MPs can be continuously degraded by the microbially driven Fenton reaction and how they are degraded are still unknown. A pure-culture system using Shewanella putrefaciens 200 was set up to explore the effect and mechanism of microbially driven Fenton reaction on PS-MP degradation. In a 14-day operation, ·OH produced by the microbially driven Fenton reaction could degrade PS-MPs with a weight loss of 6.1 ± 0.6% and an O/C ratio of 0.6 (v.s. 0.6 ± 0.1% and 0.1, respectively, in the ·OH quenched group). Benzene ring derivatives such as 2-isopropyl-5-methyl-1-heptanol and nonahexacontanoic acid were the main soluble products of PS-MP degradation. The ·OH-induced oxidative damage on microorganisms did not affect ·OH production significantly when there was timely replenishment of organic carbon sources to promote reproduction of microorganisms. Thus, PS-MPs can be continuously degraded by microbially driven Fenton reactions in natural alternating anaerobic-aerobic environments. This study also provides a new microbial technique for MP degradation that is different from previous technologies based on microbial plastic-degrading enzymes.
科研通智能强力驱动
Strongly Powered by AbleSci AI