Semisupervised Hyperspectral Image Classification Using a Probabilistic Pseudo-Label Generation Framework

判别式 人工智能 计算机科学 模式识别(心理学) 概率逻辑 高光谱成像 一般化 特征(语言学) 上下文图像分类 特征向量 机器学习 深度学习 深层神经网络 图像(数学) 数学 哲学 数学分析 语言学
作者
Majid Seydgar,Shahryar Rahnamayan,Pedram Ghamisi,Azam Asilian Bidgoli
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-18 被引量:21
标识
DOI:10.1109/tgrs.2022.3195924
摘要

Deep neural networks (DNNs) show impressive performance for hyperspectral image (HSI) classification when abundant labeled samples are available. The problem is that HSI sample annotation is extremely costly and the budget for this task is usually limited. To reduce the reliance on labeled samples, deep semi-supervised learning (SSL), which jointly learns from labeled and unlabeled samples, has been introduced in the literature. However, learning robust and discriminative features from unlabeled data is a challenging task due to various noise effects and ambiguity of unlabeled samples. As a result, recent advances are constrained, mainly in the pre-training or warm-up stage. In this paper, we propose a deep probabilistic framework to generate reliable pseudo labels to explicitly learn discriminative features from unlabeled samples. The generated pseudo labels of our proposed framework can be fed to various DNNs to improve their generalization capacity. Our proposed framework takes only 10 labeled samples per class to represent the label set as an uncertainty-aware distribution in the latent space. The pseudo labels are then generated for those unlabeled samples whose feature values match the distribution with high probability. By performing extensive experiments on four publicly available datasets, we show that our framework can generate reliable pseudo labels to significantly improve the generalization capacity of several state-of-the-art DNNs. In addition, we introduce a new DNN for HSI classification that demonstrates outstanding accuracy results in comparison with its rivals.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
是小袁呀完成签到 ,获得积分10
2秒前
爱笑的汽车完成签到 ,获得积分10
3秒前
慕青应助故意的小熊猫采纳,获得10
3秒前
4秒前
4秒前
Mockingjay发布了新的文献求助10
5秒前
Catloaf完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
ay发布了新的文献求助10
8秒前
8秒前
脑壳疼完成签到,获得积分10
9秒前
9秒前
鲤鱼平蓝完成签到 ,获得积分10
9秒前
万能图书馆应助123123采纳,获得10
9秒前
s可完成签到,获得积分20
9秒前
ELEVEN完成签到 ,获得积分10
11秒前
cis2014发布了新的文献求助10
11秒前
12秒前
蜘蛛侠完成签到,获得积分10
13秒前
小二郎应助端庄的小文采纳,获得10
13秒前
13秒前
荷叶边边头完成签到,获得积分10
13秒前
13秒前
GGBOND完成签到,获得积分10
14秒前
happiness发布了新的文献求助10
14秒前
16秒前
danli完成签到,获得积分10
16秒前
科研通AI2S应助霸气咖啡豆采纳,获得10
16秒前
雪白的冬日完成签到,获得积分10
16秒前
AteeqBaloch发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598595
求助须知:如何正确求助?哪些是违规求助? 4684033
关于积分的说明 14833389
捐赠科研通 4664115
什么是DOI,文献DOI怎么找? 2537300
邀请新用户注册赠送积分活动 1504886
关于科研通互助平台的介绍 1470591