Semisupervised Hyperspectral Image Classification Using a Probabilistic Pseudo-Label Generation Framework

判别式 人工智能 计算机科学 模式识别(心理学) 概率逻辑 高光谱成像 一般化 特征(语言学) 上下文图像分类 特征向量 机器学习 深度学习 深层神经网络 图像(数学) 数学 哲学 数学分析 语言学
作者
Majid Seydgar,Shahryar Rahnamayan,Pedram Ghamisi,Azam Asilian Bidgoli
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-18 被引量:21
标识
DOI:10.1109/tgrs.2022.3195924
摘要

Deep neural networks (DNNs) show impressive performance for hyperspectral image (HSI) classification when abundant labeled samples are available. The problem is that HSI sample annotation is extremely costly and the budget for this task is usually limited. To reduce the reliance on labeled samples, deep semi-supervised learning (SSL), which jointly learns from labeled and unlabeled samples, has been introduced in the literature. However, learning robust and discriminative features from unlabeled data is a challenging task due to various noise effects and ambiguity of unlabeled samples. As a result, recent advances are constrained, mainly in the pre-training or warm-up stage. In this paper, we propose a deep probabilistic framework to generate reliable pseudo labels to explicitly learn discriminative features from unlabeled samples. The generated pseudo labels of our proposed framework can be fed to various DNNs to improve their generalization capacity. Our proposed framework takes only 10 labeled samples per class to represent the label set as an uncertainty-aware distribution in the latent space. The pseudo labels are then generated for those unlabeled samples whose feature values match the distribution with high probability. By performing extensive experiments on four publicly available datasets, we show that our framework can generate reliable pseudo labels to significantly improve the generalization capacity of several state-of-the-art DNNs. In addition, we introduce a new DNN for HSI classification that demonstrates outstanding accuracy results in comparison with its rivals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
1秒前
Leif应助科研通管家采纳,获得20
1秒前
ding应助科研通管家采纳,获得20
1秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
prosperp应助科研通管家采纳,获得10
2秒前
zhang完成签到,获得积分10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
科研通AI5应助liuguohua126采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
2秒前
科目三应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
小星发布了新的文献求助10
2秒前
3秒前
3秒前
深情安青应助小可采纳,获得10
3秒前
4秒前
高大代容发布了新的文献求助10
4秒前
杳鸢应助张肥肥采纳,获得10
4秒前
4秒前
breath完成签到 ,获得积分10
4秒前
伊丽莎白打工完成签到,获得积分10
4秒前
cc0514gr完成签到,获得积分10
5秒前
研友_nv2r4n发布了新的文献求助10
5秒前
WxChen发布了新的文献求助20
5秒前
snowdrift完成签到,获得积分10
5秒前
5秒前
Din完成签到 ,获得积分10
5秒前
6秒前
6秒前
abcc1234完成签到,获得积分10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740