判别式
人工智能
计算机科学
模式识别(心理学)
概率逻辑
高光谱成像
一般化
特征(语言学)
上下文图像分类
特征向量
机器学习
深度学习
深层神经网络
图像(数学)
数学
数学分析
语言学
哲学
作者
Majid Seydgar,Shahryar Rahnamayan,Pedram Ghamisi,Azam Asilian Bidgoli
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing
[Institute of Electrical and Electronics Engineers]
日期:2022-01-01
卷期号:60: 1-18
被引量:11
标识
DOI:10.1109/tgrs.2022.3195924
摘要
Deep neural networks (DNNs) show impressive performance for hyperspectral image (HSI) classification when abundant labeled samples are available. The problem is that HSI sample annotation is extremely costly and the budget for this task is usually limited. To reduce the reliance on labeled samples, deep semi-supervised learning (SSL), which jointly learns from labeled and unlabeled samples, has been introduced in the literature. However, learning robust and discriminative features from unlabeled data is a challenging task due to various noise effects and ambiguity of unlabeled samples. As a result, recent advances are constrained, mainly in the pre-training or warm-up stage. In this paper, we propose a deep probabilistic framework to generate reliable pseudo labels to explicitly learn discriminative features from unlabeled samples. The generated pseudo labels of our proposed framework can be fed to various DNNs to improve their generalization capacity. Our proposed framework takes only 10 labeled samples per class to represent the label set as an uncertainty-aware distribution in the latent space. The pseudo labels are then generated for those unlabeled samples whose feature values match the distribution with high probability. By performing extensive experiments on four publicly available datasets, we show that our framework can generate reliable pseudo labels to significantly improve the generalization capacity of several state-of-the-art DNNs. In addition, we introduce a new DNN for HSI classification that demonstrates outstanding accuracy results in comparison with its rivals.
科研通智能强力驱动
Strongly Powered by AbleSci AI