Assessment of Fusion After Anterior Cervical Discectomy and Fusion Using Convolutional Neural Network Algorithm

颈椎前路椎间盘切除融合术 骨不连 医学 射线照相术 算法 卷积神经网络 图像融合 融合 脊柱融合术 放射科 人工智能 颈椎 外科 计算机科学 图像(数学) 哲学 语言学
作者
Sehan Park,Jeoung Kun Kim,Min Cheol Chang,Jeong-Jin Park,Jae Jun Yang,Gun Woo Lee
出处
期刊:Spine [Lippincott Williams & Wilkins]
卷期号:47 (23): 1645-1650 被引量:5
标识
DOI:10.1097/brs.0000000000004439
摘要

A convolutional neural network (CNN) is a deep learning (DL) model specialized for image processing, analysis, and classification.In this study, we evaluated whether a CNN model using lateral cervical spine radiographs as input data can help assess fusion after anterior cervical discectomy and fusion (ACDF).Diagnostic imaging study using DL.We included 187 patients who underwent ACDF and fusion assessment with postoperative one-year computed tomography and neutral and dynamic lateral cervical spine radiographs.The performance of the CNN-based DL algorithm was evaluated in terms of accuracy and area under the curve.Fusion or nonunion was confirmed by cervical spine computed tomography. Among the 187 patients, 69.5% (130 patients) were randomly selected as the training set, and the remaining 30.5% (57 patients) were assigned to the validation set to evaluate model performance. Radiographs of the cervical spine were used as input images to develop a CNN-based DL algorithm. The CNN algorithm used three radiographs (neutral, flexion, and extension) per patient and showed the diagnostic results as fusion (0) or nonunion (1) for each radiograph. By combining the results of the three radiographs, the final decision for a patient was determined to be fusion (fusion ≥2) or nonunion (fusion ≤1). By combining the results of the three radiographs, the final decision for a patient was determined as fusion (fusion ≥2) or nonunion (nonunion ≤1).The CNN-based DL model demonstrated an accuracy of 89.5% and an area under the curve of 0.889 (95% confidence interval, 0.793-0.984).The CNN algorithm for fusion assessment after ACDF trained using lateral cervical radiographs showed a relatively high diagnostic accuracy of 89.5% and is expected to be a useful aid in detecting pseudarthrosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
桃源theshy发布了新的文献求助10
3秒前
kingwill举报求助违规成功
4秒前
wdy111举报求助违规成功
4秒前
Zel博博举报求助违规成功
4秒前
4秒前
5秒前
乂贰ZERO叁发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
9秒前
10秒前
小二郎应助山城小肘子采纳,获得30
10秒前
Muhammad发布了新的文献求助10
10秒前
11秒前
jundading发布了新的文献求助10
11秒前
桃源theshy完成签到,获得积分10
12秒前
牛姐发布了新的文献求助30
12秒前
ZWE发布了新的文献求助10
12秒前
邵裘完成签到,获得积分10
13秒前
科目三应助Dylan采纳,获得10
13秒前
幸运海星完成签到,获得积分10
13秒前
智智完成签到 ,获得积分10
14秒前
feng发布了新的文献求助10
15秒前
奥特超曼应助千余采纳,获得10
15秒前
15秒前
16秒前
Wcx发布了新的文献求助10
16秒前
X519664508完成签到,获得积分0
16秒前
17秒前
冰红茶完成签到,获得积分10
17秒前
haha发布了新的文献求助10
18秒前
呆呆熊完成签到,获得积分10
19秒前
加油呀完成签到,获得积分10
19秒前
共享精神应助ddddd采纳,获得10
20秒前
20秒前
我是老大应助呆呆熊采纳,获得10
22秒前
22秒前
lc发布了新的文献求助30
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989645
求助须知:如何正确求助?哪些是违规求助? 3531805
关于积分的说明 11254983
捐赠科研通 3270372
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176