Assessment of Fusion After Anterior Cervical Discectomy and Fusion Using Convolutional Neural Network Algorithm

颈椎前路椎间盘切除融合术 骨不连 医学 射线照相术 算法 卷积神经网络 图像融合 融合 脊柱融合术 放射科 人工智能 颈椎 外科 计算机科学 图像(数学) 哲学 语言学
作者
Sehan Park,Jeoung Kun Kim,Min Cheol Chang,Jeong-Jin Park,Jae Jun Yang,Gun Woo Lee
出处
期刊:Spine [Ovid Technologies (Wolters Kluwer)]
卷期号:47 (23): 1645-1650 被引量:4
标识
DOI:10.1097/brs.0000000000004439
摘要

Background. A convolutional neural network (CNN) is a deep learning (DL) model specialized for image processing, analysis, and classification. Objective. In this study, we evaluated whether a CNN model using lateral cervical spine radiographs as input data can help assess fusion after anterior cervical discectomy and fusion (ACDF). Study Design. Diagnostic imaging study using DL. Patient Sample. We included 187 patients who underwent ACDF and fusion assessment with postoperative one-year computed tomography and neutral and dynamic lateral cervical spine radiographs. Outcome Measures. The performance of the CNN-based DL algorithm was evaluated in terms of accuracy and area under the curve. Materials and Methods. Fusion or nonunion was confirmed by cervical spine computed tomography. Among the 187 patients, 69.5% (130 patients) were randomly selected as the training set, and the remaining 30.5% (57 patients) were assigned to the validation set to evaluate model performance. Radiographs of the cervical spine were used as input images to develop a CNN-based DL algorithm. The CNN algorithm used three radiographs (neutral, flexion, and extension) per patient and showed the diagnostic results as fusion (0) or nonunion (1) for each radiograph. By combining the results of the three radiographs, the final decision for a patient was determined to be fusion (fusion ≥2) or nonunion (fusion ≤1). By combining the results of the three radiographs, the final decision for a patient was determined as fusion (fusion ≥2) or nonunion (nonunion ≤1). Results. The CNN-based DL model demonstrated an accuracy of 89.5% and an area under the curve of 0.889 (95% confidence interval, 0.793–0.984). Conclusion. The CNN algorithm for fusion assessment after ACDF trained using lateral cervical radiographs showed a relatively high diagnostic accuracy of 89.5% and is expected to be a useful aid in detecting pseudarthrosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
giao完成签到,获得积分10
刚刚
1秒前
忆之完成签到,获得积分10
1秒前
阿璇完成签到,获得积分10
1秒前
1秒前
培乐多完成签到,获得积分10
2秒前
bluesmile完成签到,获得积分10
2秒前
sss完成签到,获得积分10
2秒前
wyg117发布了新的文献求助10
3秒前
3秒前
3秒前
nelson关注了科研通微信公众号
4秒前
李健的小迷弟应助lala采纳,获得10
4秒前
风中亦旋完成签到,获得积分10
5秒前
Wrl完成签到,获得积分10
5秒前
Godspeed完成签到,获得积分10
7秒前
范浩然发布了新的文献求助10
7秒前
斯文败类应助流年羽采纳,获得10
8秒前
8秒前
9秒前
卡卡完成签到,获得积分10
9秒前
小鸭子完成签到,获得积分10
10秒前
wanci应助shane采纳,获得10
10秒前
10秒前
Supreme完成签到,获得积分10
10秒前
刘德华完成签到,获得积分10
10秒前
小娟完成签到,获得积分10
10秒前
淡定碧玉完成签到 ,获得积分10
10秒前
bkagyin应助lllyyysss采纳,获得10
11秒前
清城完成签到,获得积分10
12秒前
tietie发布了新的文献求助10
13秒前
大袁完成签到,获得积分10
13秒前
Svetlana给Svetlana的求助进行了留言
13秒前
luf完成签到,获得积分10
13秒前
13秒前
jj完成签到,获得积分10
14秒前
MingM应助周一凡采纳,获得10
14秒前
勤恳白秋完成签到,获得积分10
14秒前
JamesPei应助wsh采纳,获得10
14秒前
知性的绮兰完成签到,获得积分10
15秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3072891
求助须知:如何正确求助?哪些是违规求助? 2726503
关于积分的说明 7495286
捐赠科研通 2374552
什么是DOI,文献DOI怎么找? 1259054
科研通“疑难数据库(出版商)”最低求助积分说明 610527
版权声明 597020