Assessment of Fusion After Anterior Cervical Discectomy and Fusion Using Convolutional Neural Network Algorithm

颈椎前路椎间盘切除融合术 骨不连 医学 射线照相术 算法 卷积神经网络 图像融合 融合 脊柱融合术 放射科 人工智能 颈椎 外科 计算机科学 图像(数学) 哲学 语言学
作者
Sehan Park,Jeoung Kun Kim,Min Cheol Chang,Jeong-Jin Park,Jae Jun Yang,Gun Woo Lee
出处
期刊:Spine [Ovid Technologies (Wolters Kluwer)]
卷期号:47 (23): 1645-1650 被引量:4
标识
DOI:10.1097/brs.0000000000004439
摘要

Background. A convolutional neural network (CNN) is a deep learning (DL) model specialized for image processing, analysis, and classification. Objective. In this study, we evaluated whether a CNN model using lateral cervical spine radiographs as input data can help assess fusion after anterior cervical discectomy and fusion (ACDF). Study Design. Diagnostic imaging study using DL. Patient Sample. We included 187 patients who underwent ACDF and fusion assessment with postoperative one-year computed tomography and neutral and dynamic lateral cervical spine radiographs. Outcome Measures. The performance of the CNN-based DL algorithm was evaluated in terms of accuracy and area under the curve. Materials and Methods. Fusion or nonunion was confirmed by cervical spine computed tomography. Among the 187 patients, 69.5% (130 patients) were randomly selected as the training set, and the remaining 30.5% (57 patients) were assigned to the validation set to evaluate model performance. Radiographs of the cervical spine were used as input images to develop a CNN-based DL algorithm. The CNN algorithm used three radiographs (neutral, flexion, and extension) per patient and showed the diagnostic results as fusion (0) or nonunion (1) for each radiograph. By combining the results of the three radiographs, the final decision for a patient was determined to be fusion (fusion ≥2) or nonunion (fusion ≤1). By combining the results of the three radiographs, the final decision for a patient was determined as fusion (fusion ≥2) or nonunion (nonunion ≤1). Results. The CNN-based DL model demonstrated an accuracy of 89.5% and an area under the curve of 0.889 (95% confidence interval, 0.793–0.984). Conclusion. The CNN algorithm for fusion assessment after ACDF trained using lateral cervical radiographs showed a relatively high diagnostic accuracy of 89.5% and is expected to be a useful aid in detecting pseudarthrosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lxland1219发布了新的文献求助10
1秒前
lihui完成签到,获得积分10
1秒前
2秒前
小蘑菇应助CNSSCI采纳,获得10
3秒前
wy18567337203发布了新的文献求助10
3秒前
4秒前
Lucky完成签到,获得积分10
5秒前
Lucky完成签到 ,获得积分10
5秒前
6秒前
小二郎应助霜霜采纳,获得10
7秒前
7秒前
gengen123完成签到,获得积分10
8秒前
youyou完成签到,获得积分10
8秒前
tony完成签到,获得积分10
8秒前
曾经寒香完成签到,获得积分20
8秒前
8秒前
LY完成签到,获得积分10
10秒前
feng完成签到,获得积分10
11秒前
隐形曼青应助JUST采纳,获得10
11秒前
12秒前
丘比特应助伶俐问薇采纳,获得10
13秒前
wy18567337203完成签到,获得积分10
13秒前
gengen123发布了新的文献求助30
13秒前
13秒前
yy完成签到 ,获得积分10
14秒前
lolo完成签到,获得积分10
15秒前
研友_ZbP0qL发布了新的文献求助10
15秒前
不晚完成签到,获得积分10
15秒前
善良夜梅发布了新的文献求助10
16秒前
17秒前
coconut完成签到,获得积分10
18秒前
CNSSCI发布了新的文献求助10
18秒前
凶狠的清完成签到,获得积分20
21秒前
文静发布了新的文献求助10
22秒前
22秒前
研友_ZbP0qL完成签到,获得积分20
22秒前
24秒前
RockRedfoo完成签到 ,获得积分20
24秒前
25秒前
刘巴旦发布了新的文献求助20
26秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3254506
求助须知:如何正确求助?哪些是违规求助? 2896643
关于积分的说明 8293717
捐赠科研通 2565614
什么是DOI,文献DOI怎么找? 1393195
科研通“疑难数据库(出版商)”最低求助积分说明 652443
邀请新用户注册赠送积分活动 629992