Assessment of Fusion After Anterior Cervical Discectomy and Fusion Using Convolutional Neural Network Algorithm

颈椎前路椎间盘切除融合术 骨不连 医学 射线照相术 算法 卷积神经网络 图像融合 融合 脊柱融合术 放射科 人工智能 颈椎 外科 计算机科学 图像(数学) 哲学 语言学
作者
Sehan Park,Jeoung Kun Kim,Min Cheol Chang,Jeong-Jin Park,Jae Jun Yang,Gun Woo Lee
出处
期刊:Spine [Lippincott Williams & Wilkins]
卷期号:47 (23): 1645-1650 被引量:5
标识
DOI:10.1097/brs.0000000000004439
摘要

A convolutional neural network (CNN) is a deep learning (DL) model specialized for image processing, analysis, and classification.In this study, we evaluated whether a CNN model using lateral cervical spine radiographs as input data can help assess fusion after anterior cervical discectomy and fusion (ACDF).Diagnostic imaging study using DL.We included 187 patients who underwent ACDF and fusion assessment with postoperative one-year computed tomography and neutral and dynamic lateral cervical spine radiographs.The performance of the CNN-based DL algorithm was evaluated in terms of accuracy and area under the curve.Fusion or nonunion was confirmed by cervical spine computed tomography. Among the 187 patients, 69.5% (130 patients) were randomly selected as the training set, and the remaining 30.5% (57 patients) were assigned to the validation set to evaluate model performance. Radiographs of the cervical spine were used as input images to develop a CNN-based DL algorithm. The CNN algorithm used three radiographs (neutral, flexion, and extension) per patient and showed the diagnostic results as fusion (0) or nonunion (1) for each radiograph. By combining the results of the three radiographs, the final decision for a patient was determined to be fusion (fusion ≥2) or nonunion (fusion ≤1). By combining the results of the three radiographs, the final decision for a patient was determined as fusion (fusion ≥2) or nonunion (nonunion ≤1).The CNN-based DL model demonstrated an accuracy of 89.5% and an area under the curve of 0.889 (95% confidence interval, 0.793-0.984).The CNN algorithm for fusion assessment after ACDF trained using lateral cervical radiographs showed a relatively high diagnostic accuracy of 89.5% and is expected to be a useful aid in detecting pseudarthrosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CC完成签到 ,获得积分10
1秒前
mouhao1发布了新的文献求助10
2秒前
Sega完成签到,获得积分10
2秒前
谢戴竹完成签到,获得积分20
2秒前
陈情完成签到,获得积分20
3秒前
量子星尘发布了新的文献求助150
4秒前
浮游应助ZHOUZHOU采纳,获得10
4秒前
5秒前
小二郎应助认真的不斜采纳,获得10
5秒前
熊11发布了新的文献求助10
5秒前
科研工头发布了新的文献求助10
7秒前
7秒前
7秒前
北陌完成签到,获得积分20
8秒前
浮游应助lyyy采纳,获得10
8秒前
8秒前
情怀应助Atticus采纳,获得10
8秒前
10秒前
泡沫完成签到,获得积分10
11秒前
TANG完成签到,获得积分10
11秒前
12秒前
Gakay发布了新的文献求助10
14秒前
gogogre发布了新的文献求助10
14秒前
dwj发布了新的文献求助10
14秒前
15秒前
菠萝李完成签到,获得积分10
17秒前
赘婿应助细腻听白采纳,获得10
17秒前
阿崔发布了新的文献求助10
18秒前
18秒前
英勇哈密瓜数据线完成签到,获得积分10
18秒前
清竹完成签到,获得积分10
19秒前
无花果应助hu采纳,获得10
20秒前
阿怪发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
21秒前
浮游应助grumpysquirel采纳,获得10
22秒前
dwj完成签到,获得积分10
22秒前
万能图书馆应助Akiba采纳,获得10
23秒前
pearer完成签到,获得积分10
23秒前
Vito完成签到,获得积分10
24秒前
乐乐应助lyyy采纳,获得10
24秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5143039
求助须知:如何正确求助?哪些是违规求助? 4341079
关于积分的说明 13519541
捐赠科研通 4181353
什么是DOI,文献DOI怎么找? 2292877
邀请新用户注册赠送积分活动 1293512
关于科研通互助平台的介绍 1236099