Assessment of Fusion After Anterior Cervical Discectomy and Fusion Using Convolutional Neural Network Algorithm

颈椎前路椎间盘切除融合术 骨不连 医学 射线照相术 算法 卷积神经网络 图像融合 融合 脊柱融合术 放射科 人工智能 颈椎 外科 计算机科学 图像(数学) 哲学 语言学
作者
Sehan Park,Jeoung Kun Kim,Min Cheol Chang,Jeong-Jin Park,Jae Jun Yang,Gun Woo Lee
出处
期刊:Spine [Ovid Technologies (Wolters Kluwer)]
卷期号:47 (23): 1645-1650 被引量:5
标识
DOI:10.1097/brs.0000000000004439
摘要

A convolutional neural network (CNN) is a deep learning (DL) model specialized for image processing, analysis, and classification.In this study, we evaluated whether a CNN model using lateral cervical spine radiographs as input data can help assess fusion after anterior cervical discectomy and fusion (ACDF).Diagnostic imaging study using DL.We included 187 patients who underwent ACDF and fusion assessment with postoperative one-year computed tomography and neutral and dynamic lateral cervical spine radiographs.The performance of the CNN-based DL algorithm was evaluated in terms of accuracy and area under the curve.Fusion or nonunion was confirmed by cervical spine computed tomography. Among the 187 patients, 69.5% (130 patients) were randomly selected as the training set, and the remaining 30.5% (57 patients) were assigned to the validation set to evaluate model performance. Radiographs of the cervical spine were used as input images to develop a CNN-based DL algorithm. The CNN algorithm used three radiographs (neutral, flexion, and extension) per patient and showed the diagnostic results as fusion (0) or nonunion (1) for each radiograph. By combining the results of the three radiographs, the final decision for a patient was determined to be fusion (fusion ≥2) or nonunion (fusion ≤1). By combining the results of the three radiographs, the final decision for a patient was determined as fusion (fusion ≥2) or nonunion (nonunion ≤1).The CNN-based DL model demonstrated an accuracy of 89.5% and an area under the curve of 0.889 (95% confidence interval, 0.793-0.984).The CNN algorithm for fusion assessment after ACDF trained using lateral cervical radiographs showed a relatively high diagnostic accuracy of 89.5% and is expected to be a useful aid in detecting pseudarthrosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
迷路的小牛马完成签到,获得积分10
1秒前
Daniel2010完成签到,获得积分10
2秒前
David完成签到,获得积分10
2秒前
李爱国应助爱上学的小金采纳,获得30
2秒前
七面东风完成签到,获得积分10
2秒前
NexusExplorer应助zr117采纳,获得10
2秒前
janejane完成签到 ,获得积分20
3秒前
3秒前
4秒前
kele发布了新的文献求助10
4秒前
欢呼凝冬发布了新的文献求助10
4秒前
bkagyin应助yon采纳,获得10
4秒前
芝9512发布了新的文献求助10
5秒前
janejane发布了新的文献求助10
5秒前
messyknots完成签到,获得积分10
5秒前
gilderf发布了新的文献求助10
6秒前
db完成签到,获得积分10
6秒前
VInci完成签到,获得积分10
6秒前
做科研的小施同学完成签到,获得积分10
6秒前
陈陈完成签到,获得积分10
7秒前
平心定气完成签到 ,获得积分10
7秒前
甜美的松鼠完成签到 ,获得积分10
7秒前
lyric发布了新的文献求助10
7秒前
7秒前
keyanlv完成签到,获得积分10
8秒前
8秒前
甜美的艳血发布了新的文献求助100
9秒前
qingli应助messyknots采纳,获得10
9秒前
kele完成签到,获得积分10
10秒前
专一的善愁完成签到 ,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
12秒前
cicytjsxjr完成签到,获得积分10
13秒前
e麓绝尘完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773892
求助须知:如何正确求助?哪些是违规求助? 5614543
关于积分的说明 15433335
捐赠科研通 4906309
什么是DOI,文献DOI怎么找? 2640191
邀请新用户注册赠送积分活动 1588031
关于科研通互助平台的介绍 1543027