Adaptive Design of Experimental Conditions for LaFeO3 Crystals with Experiments and Bayesian Optimization

贝叶斯优化 贝叶斯概率 计算机科学 材料科学 生物系统 工艺工程 人工智能 工程类 生物
作者
Daigo Kaneko,Risa Iwatsubo,Hajime Wagata,Hiromasa Kaneko
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
标识
DOI:10.1021/acs.iecr.4c04680
摘要

In this study, Bayesian optimization was combined with experiments to optimize the experimental conditions for the synthesis of LaFeO3 crystals with desired crystal properties using the flux growth method. The first set of candidates for the experimental conditions was determined based on the design of experiments. LaFeO3 crystals were synthesized under specific conditions, and their crystal properties were analyzed. Using the obtained data set, a Gaussian process regression model Y = f(X) was constructed with experimental conditions as explanatory variables X and crystal properties as objective variables Y. Candidate experimental conditions were then input into the model to predict crystal properties, and an acquisition function was calculated. Candidate experimental conditions with large values of the acquisition function were selected. Subsequently, LaFeO3 crystals were synthesized under these conditions, and their crystal properties analyzed. Construction of the Gaussian process regression model, selection of the next candidates for experimental conditions, and synthesis were repeated to synthesize LaFeO3 crystals with the desired crystal properties. Three case studies confirmed that LaFeO3 crystals with small crystallite sizes, calculated using X-ray diffraction (XRD) patterns and Scherrer's equation, can be synthesized within a small number of experiments. Furthermore, an index was prepared to evaluate the presence of impurities by excluding the LaFeO3-derived peaks from the XRD patterns of the products, which were used as Y in addition to crystallite size. A multiobjective optimization was conducted, and the suppression of impurity formation and reduction of crystallite size were achieved simultaneously.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
酷波er应助ghkjl采纳,获得10
1秒前
sophia完成签到,获得积分10
1秒前
kaia发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
kirito发布了新的文献求助10
2秒前
曹梦龙发布了新的文献求助10
2秒前
温暖宛筠发布了新的文献求助10
2秒前
3秒前
隐形曼青应助77采纳,获得10
3秒前
科研小白发布了新的文献求助10
3秒前
WANG完成签到,获得积分10
3秒前
丁昆发布了新的文献求助10
4秒前
4秒前
TinTin发布了新的文献求助10
5秒前
5秒前
科研通AI6应助BENRONG采纳,获得10
6秒前
6秒前
今后应助侠客采纳,获得10
6秒前
完美世界应助刘一一采纳,获得10
7秒前
情怀应助油条狗采纳,获得10
7秒前
fu完成签到,获得积分10
8秒前
8秒前
cc251672发布了新的文献求助10
9秒前
只爱LJT发布了新的文献求助10
9秒前
小J应助锅巴采纳,获得10
10秒前
10秒前
11秒前
李健应助天音法里奈采纳,获得10
12秒前
科目三应助rattlebox321采纳,获得10
13秒前
13秒前
13秒前
14秒前
老实奇迹发布了新的文献求助10
15秒前
15秒前
Pioneer完成签到 ,获得积分10
15秒前
16秒前
123发布了新的文献求助10
16秒前
16秒前
七叶树完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521225
求助须知:如何正确求助?哪些是违规求助? 4612762
关于积分的说明 14535207
捐赠科研通 4550234
什么是DOI,文献DOI怎么找? 2493599
邀请新用户注册赠送积分活动 1474715
关于科研通互助平台的介绍 1446175