Adaptive Design of Experimental Conditions for LaFeO3 Crystals with Experiments and Bayesian Optimization

贝叶斯优化 贝叶斯概率 计算机科学 材料科学 生物系统 工艺工程 人工智能 工程类 生物
作者
Daigo Kaneko,Risa Iwatsubo,Hajime Wagata,Hiromasa Kaneko
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
标识
DOI:10.1021/acs.iecr.4c04680
摘要

In this study, Bayesian optimization was combined with experiments to optimize the experimental conditions for the synthesis of LaFeO3 crystals with desired crystal properties using the flux growth method. The first set of candidates for the experimental conditions was determined based on the design of experiments. LaFeO3 crystals were synthesized under specific conditions, and their crystal properties were analyzed. Using the obtained data set, a Gaussian process regression model Y = f(X) was constructed with experimental conditions as explanatory variables X and crystal properties as objective variables Y. Candidate experimental conditions were then input into the model to predict crystal properties, and an acquisition function was calculated. Candidate experimental conditions with large values of the acquisition function were selected. Subsequently, LaFeO3 crystals were synthesized under these conditions, and their crystal properties analyzed. Construction of the Gaussian process regression model, selection of the next candidates for experimental conditions, and synthesis were repeated to synthesize LaFeO3 crystals with the desired crystal properties. Three case studies confirmed that LaFeO3 crystals with small crystallite sizes, calculated using X-ray diffraction (XRD) patterns and Scherrer's equation, can be synthesized within a small number of experiments. Furthermore, an index was prepared to evaluate the presence of impurities by excluding the LaFeO3-derived peaks from the XRD patterns of the products, which were used as Y in addition to crystallite size. A multiobjective optimization was conducted, and the suppression of impurity formation and reduction of crystallite size were achieved simultaneously.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
氕氘氚发布了新的文献求助10
1秒前
2秒前
等待笑柳发布了新的文献求助30
2秒前
2秒前
3秒前
科研通AI6应助苗条的婷冉采纳,获得10
3秒前
好好发布了新的文献求助10
4秒前
跳跳熊发布了新的文献求助30
4秒前
yangzhudi2333发布了新的文献求助10
4秒前
yjw完成签到,获得积分10
4秒前
整齐墨镜完成签到,获得积分10
4秒前
4秒前
科研通AI2S应助某某采纳,获得10
5秒前
kobe发布了新的文献求助10
5秒前
小超仁完成签到 ,获得积分10
5秒前
英俊的铭应助天马采纳,获得10
6秒前
avalanche应助liuziyu采纳,获得10
6秒前
风中冷风完成签到,获得积分10
7秒前
AI发布了新的文献求助10
8秒前
sevenhill应助挽风风风风采纳,获得10
8秒前
林深时见鹿完成签到,获得积分10
8秒前
8秒前
lwl发布了新的文献求助20
9秒前
yjw发布了新的文献求助10
9秒前
英吉利25发布了新的文献求助10
10秒前
10秒前
wulalala完成签到,获得积分10
10秒前
yangzhudi2333完成签到,获得积分10
10秒前
10秒前
10秒前
莎莎完成签到 ,获得积分10
11秒前
11秒前
12秒前
搞怪易形完成签到,获得积分10
12秒前
挽风风风风完成签到,获得积分10
12秒前
13秒前
avalanche应助酷炫的天问采纳,获得50
13秒前
浮游应助zzz采纳,获得10
13秒前
雨雨发布了新的文献求助10
13秒前
123发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5429137
求助须知:如何正确求助?哪些是违规求助? 4542668
关于积分的说明 14181964
捐赠科研通 4460422
什么是DOI,文献DOI怎么找? 2445722
邀请新用户注册赠送积分活动 1436910
关于科研通互助平台的介绍 1414107