Adaptive Design of Experimental Conditions for LaFeO3 Crystals with Experiments and Bayesian Optimization

贝叶斯优化 贝叶斯概率 计算机科学 材料科学 生物系统 工艺工程 人工智能 工程类 生物
作者
Daigo Kaneko,Risa Iwatsubo,Hajime Wagata,Hiromasa Kaneko
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
标识
DOI:10.1021/acs.iecr.4c04680
摘要

In this study, Bayesian optimization was combined with experiments to optimize the experimental conditions for the synthesis of LaFeO3 crystals with desired crystal properties using the flux growth method. The first set of candidates for the experimental conditions was determined based on the design of experiments. LaFeO3 crystals were synthesized under specific conditions, and their crystal properties were analyzed. Using the obtained data set, a Gaussian process regression model Y = f(X) was constructed with experimental conditions as explanatory variables X and crystal properties as objective variables Y. Candidate experimental conditions were then input into the model to predict crystal properties, and an acquisition function was calculated. Candidate experimental conditions with large values of the acquisition function were selected. Subsequently, LaFeO3 crystals were synthesized under these conditions, and their crystal properties analyzed. Construction of the Gaussian process regression model, selection of the next candidates for experimental conditions, and synthesis were repeated to synthesize LaFeO3 crystals with the desired crystal properties. Three case studies confirmed that LaFeO3 crystals with small crystallite sizes, calculated using X-ray diffraction (XRD) patterns and Scherrer's equation, can be synthesized within a small number of experiments. Furthermore, an index was prepared to evaluate the presence of impurities by excluding the LaFeO3-derived peaks from the XRD patterns of the products, which were used as Y in addition to crystallite size. A multiobjective optimization was conducted, and the suppression of impurity formation and reduction of crystallite size were achieved simultaneously.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暖阳发布了新的文献求助20
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
欣慰从云完成签到,获得积分20
1秒前
Yozzi完成签到,获得积分10
2秒前
热心市民蚂蚱殿下完成签到,获得积分10
3秒前
。。完成签到,获得积分20
4秒前
香蕉觅云应助坤坤采纳,获得10
4秒前
炙热的爆米花完成签到,获得积分20
4秒前
Ma完成签到 ,获得积分10
5秒前
5秒前
狄远山完成签到 ,获得积分10
5秒前
章鱼丸子完成签到,获得积分10
5秒前
哭泣的鸵鸟完成签到,获得积分10
5秒前
reny发布了新的文献求助10
6秒前
烂漫春天发布了新的文献求助10
6秒前
6秒前
489完成签到 ,获得积分10
6秒前
柯柯啦啦完成签到,获得积分10
7秒前
scy关注了科研通微信公众号
7秒前
7秒前
皮肤专硕小白一枚完成签到,获得积分10
7秒前
高贵的子默完成签到,获得积分10
7秒前
8秒前
8秒前
搜集达人应助silin采纳,获得10
9秒前
yingrui完成签到,获得积分10
9秒前
烟花应助周飞采纳,获得10
9秒前
小树完成签到,获得积分10
10秒前
完美世界应助神奇的呃采纳,获得10
10秒前
Chen发布了新的文献求助20
10秒前
10秒前
10秒前
answer完成签到,获得积分10
10秒前
10秒前
11秒前
细心枫叶发布了新的文献求助10
12秒前
12秒前
59完成签到,获得积分10
12秒前
酷炫迎波发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Ride comfort analysis of hydro-pneumatic suspension considering variable damping matched with dynamitic load 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4588123
求助须知:如何正确求助?哪些是违规求助? 4003732
关于积分的说明 12394936
捐赠科研通 3680328
什么是DOI,文献DOI怎么找? 2028598
邀请新用户注册赠送积分活动 1062082
科研通“疑难数据库(出版商)”最低求助积分说明 948086