Adaptive Design of Experimental Conditions for LaFeO3 Crystals with Experiments and Bayesian Optimization

贝叶斯优化 贝叶斯概率 计算机科学 材料科学 生物系统 工艺工程 人工智能 工程类 生物
作者
Daigo Kaneko,Risa Iwatsubo,Hajime Wagata,Hiromasa Kaneko
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
标识
DOI:10.1021/acs.iecr.4c04680
摘要

In this study, Bayesian optimization was combined with experiments to optimize the experimental conditions for the synthesis of LaFeO3 crystals with desired crystal properties using the flux growth method. The first set of candidates for the experimental conditions was determined based on the design of experiments. LaFeO3 crystals were synthesized under specific conditions, and their crystal properties were analyzed. Using the obtained data set, a Gaussian process regression model Y = f(X) was constructed with experimental conditions as explanatory variables X and crystal properties as objective variables Y. Candidate experimental conditions were then input into the model to predict crystal properties, and an acquisition function was calculated. Candidate experimental conditions with large values of the acquisition function were selected. Subsequently, LaFeO3 crystals were synthesized under these conditions, and their crystal properties analyzed. Construction of the Gaussian process regression model, selection of the next candidates for experimental conditions, and synthesis were repeated to synthesize LaFeO3 crystals with the desired crystal properties. Three case studies confirmed that LaFeO3 crystals with small crystallite sizes, calculated using X-ray diffraction (XRD) patterns and Scherrer's equation, can be synthesized within a small number of experiments. Furthermore, an index was prepared to evaluate the presence of impurities by excluding the LaFeO3-derived peaks from the XRD patterns of the products, which were used as Y in addition to crystallite size. A multiobjective optimization was conducted, and the suppression of impurity formation and reduction of crystallite size were achieved simultaneously.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白蓝发布了新的文献求助10
1秒前
congxue完成签到,获得积分10
1秒前
等风的人发布了新的文献求助10
3秒前
Ava应助Yuanyuan采纳,获得10
3秒前
4秒前
4秒前
x笑一完成签到,获得积分10
5秒前
现代雪柳完成签到,获得积分10
6秒前
善学以致用应助DuanShanNan采纳,获得10
9秒前
现代雪柳发布了新的文献求助10
10秒前
充电宝应助沐mu采纳,获得10
11秒前
桐桐应助MWY采纳,获得10
11秒前
百里守约完成签到 ,获得积分10
11秒前
夏天呀完成签到,获得积分10
11秒前
万能图书馆应助ying采纳,获得10
12秒前
FFFFcom完成签到,获得积分10
13秒前
13秒前
小马甲应助无私的以云采纳,获得10
13秒前
科研通AI2S应助壮观以松采纳,获得10
14秒前
15秒前
jrzsy完成签到,获得积分10
16秒前
16秒前
大方兔子发布了新的文献求助10
17秒前
DuanShanNan完成签到,获得积分20
18秒前
wuxiaochen发布了新的文献求助10
19秒前
20秒前
Owen应助爱吃香菜采纳,获得10
21秒前
DuanShanNan发布了新的文献求助10
22秒前
多多发布了新的文献求助10
24秒前
p454q完成签到 ,获得积分10
24秒前
24秒前
量子星尘发布了新的文献求助30
26秒前
良言完成签到 ,获得积分10
28秒前
28秒前
jenningseastera应助z1z1z采纳,获得20
29秒前
张豪英关注了科研通微信公众号
30秒前
jrzsy关注了科研通微信公众号
30秒前
zhh完成签到,获得积分10
30秒前
萝卜完成签到,获得积分10
35秒前
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959257
求助须知:如何正确求助?哪些是违规求助? 3505580
关于积分的说明 11124544
捐赠科研通 3237326
什么是DOI,文献DOI怎么找? 1789102
邀请新用户注册赠送积分活动 871526
科研通“疑难数据库(出版商)”最低求助积分说明 802844