亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adaptive Design of Experimental Conditions for LaFeO3 Crystals with Experiments and Bayesian Optimization

贝叶斯优化 贝叶斯概率 计算机科学 材料科学 生物系统 工艺工程 人工智能 工程类 生物
作者
Daigo Kaneko,Risa Iwatsubo,Hajime Wagata,Hiromasa Kaneko
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
标识
DOI:10.1021/acs.iecr.4c04680
摘要

In this study, Bayesian optimization was combined with experiments to optimize the experimental conditions for the synthesis of LaFeO3 crystals with desired crystal properties using the flux growth method. The first set of candidates for the experimental conditions was determined based on the design of experiments. LaFeO3 crystals were synthesized under specific conditions, and their crystal properties were analyzed. Using the obtained data set, a Gaussian process regression model Y = f(X) was constructed with experimental conditions as explanatory variables X and crystal properties as objective variables Y. Candidate experimental conditions were then input into the model to predict crystal properties, and an acquisition function was calculated. Candidate experimental conditions with large values of the acquisition function were selected. Subsequently, LaFeO3 crystals were synthesized under these conditions, and their crystal properties analyzed. Construction of the Gaussian process regression model, selection of the next candidates for experimental conditions, and synthesis were repeated to synthesize LaFeO3 crystals with the desired crystal properties. Three case studies confirmed that LaFeO3 crystals with small crystallite sizes, calculated using X-ray diffraction (XRD) patterns and Scherrer's equation, can be synthesized within a small number of experiments. Furthermore, an index was prepared to evaluate the presence of impurities by excluding the LaFeO3-derived peaks from the XRD patterns of the products, which were used as Y in addition to crystallite size. A multiobjective optimization was conducted, and the suppression of impurity formation and reduction of crystallite size were achieved simultaneously.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
caca完成签到,获得积分10
11秒前
13秒前
15秒前
19秒前
20秒前
tuanheqi发布了新的文献求助20
21秒前
兼听则明发布了新的文献求助100
22秒前
徐小徐发布了新的文献求助10
24秒前
拼搏的秋玲完成签到,获得积分10
25秒前
风语村应助激情的幻灵采纳,获得10
27秒前
freeaway完成签到,获得积分10
29秒前
34秒前
点心发布了新的文献求助10
41秒前
隐形曼青应助烨然采纳,获得10
45秒前
52秒前
1分钟前
1分钟前
tuanheqi发布了新的文献求助20
1分钟前
怕黑行恶完成签到,获得积分10
1分钟前
1分钟前
zhangzhang发布了新的文献求助10
1分钟前
1分钟前
QAZ完成签到 ,获得积分10
1分钟前
桐桐应助Jemery采纳,获得10
1分钟前
zhangzhang完成签到,获得积分10
1分钟前
NexusExplorer应助极品锅包肉采纳,获得10
2分钟前
tuanheqi发布了新的文献求助20
2分钟前
NexusExplorer应助sidneyyang采纳,获得10
2分钟前
2分钟前
2分钟前
Guan应助科研通管家采纳,获得30
2分钟前
Alyssa发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
tuanheqi发布了新的文献求助20
2分钟前
sidneyyang发布了新的文献求助10
2分钟前
3分钟前
风语村应助Guinerve采纳,获得10
3分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
A Modified Hierarchical Risk Parity Framework for Portfolio Management 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3575037
求助须知:如何正确求助?哪些是违规求助? 3145003
关于积分的说明 9457903
捐赠科研通 2846311
什么是DOI,文献DOI怎么找? 1564755
邀请新用户注册赠送积分活动 732613
科研通“疑难数据库(出版商)”最低求助积分说明 719188