Adaptive Design of Experimental Conditions for LaFeO3 Crystals with Experiments and Bayesian Optimization

贝叶斯优化 贝叶斯概率 计算机科学 材料科学 生物系统 工艺工程 人工智能 工程类 生物
作者
Daigo Kaneko,Risa Iwatsubo,Hajime Wagata,Hiromasa Kaneko
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
标识
DOI:10.1021/acs.iecr.4c04680
摘要

In this study, Bayesian optimization was combined with experiments to optimize the experimental conditions for the synthesis of LaFeO3 crystals with desired crystal properties using the flux growth method. The first set of candidates for the experimental conditions was determined based on the design of experiments. LaFeO3 crystals were synthesized under specific conditions, and their crystal properties were analyzed. Using the obtained data set, a Gaussian process regression model Y = f(X) was constructed with experimental conditions as explanatory variables X and crystal properties as objective variables Y. Candidate experimental conditions were then input into the model to predict crystal properties, and an acquisition function was calculated. Candidate experimental conditions with large values of the acquisition function were selected. Subsequently, LaFeO3 crystals were synthesized under these conditions, and their crystal properties analyzed. Construction of the Gaussian process regression model, selection of the next candidates for experimental conditions, and synthesis were repeated to synthesize LaFeO3 crystals with the desired crystal properties. Three case studies confirmed that LaFeO3 crystals with small crystallite sizes, calculated using X-ray diffraction (XRD) patterns and Scherrer's equation, can be synthesized within a small number of experiments. Furthermore, an index was prepared to evaluate the presence of impurities by excluding the LaFeO3-derived peaks from the XRD patterns of the products, which were used as Y in addition to crystallite size. A multiobjective optimization was conducted, and the suppression of impurity formation and reduction of crystallite size were achieved simultaneously.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
asdf发布了新的文献求助10
刚刚
1秒前
1秒前
yvette完成签到,获得积分10
1秒前
1秒前
dsfsd发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
yangyangzijiajia完成签到,获得积分10
3秒前
Brain完成签到,获得积分10
3秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
Chenkun发布了新的文献求助20
5秒前
祁鹤发布了新的文献求助10
5秒前
6秒前
东山完成签到 ,获得积分10
6秒前
华仔应助ice采纳,获得10
7秒前
温柔傲安完成签到,获得积分10
7秒前
王京华发布了新的文献求助10
7秒前
单薄的枕头关注了科研通微信公众号
7秒前
7秒前
王树茂发布了新的文献求助10
8秒前
嘿嘿发布了新的文献求助10
8秒前
香蕉诗蕊应助科研通管家采纳,获得10
8秒前
yvette发布了新的文献求助10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
哈哈镜给佳节的求助进行了留言
8秒前
Blitz应助科研通管家采纳,获得10
8秒前
8秒前
所所应助科研通管家采纳,获得10
8秒前
香蕉诗蕊应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
香蕉诗蕊应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
9秒前
杰尼乾乾完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5551982
求助须知:如何正确求助?哪些是违规求助? 4636809
关于积分的说明 14645565
捐赠科研通 4578578
什么是DOI,文献DOI怎么找? 2511030
邀请新用户注册赠送积分活动 1486209
关于科研通互助平台的介绍 1457502