Quantitative detection of metanil yellow adulteration in chickpea flour using line-scan near-infrared hyperspectral imaging with partial least square regression and one-dimensional convolutional neural network

掺假者 偏最小二乘回归 高光谱成像 校准 近红外光谱 预处理器 模式识别(心理学) 数学 生物系统 人工智能 统计 化学 色谱法 计算机科学 光学 物理 生物
作者
Dhritiman Saha,T. Senthilkumar,C. B. Singh,Annamalai Manickavasagan
出处
期刊:Journal of Food Composition and Analysis [Elsevier BV]
卷期号:120: 105290-105290 被引量:19
标识
DOI:10.1016/j.jfca.2023.105290
摘要

Food adulteration is a serious food safety issue, and it is visually difficult to detect metanil yellow adulteration in chickpea flour. The objective of this study was to develop a non-destructive near infrared (NIR) hyperspectral imaging system (HSI) for quantifying metanil yellow adulteration in chickpea flour. Pure chickpea flour was adulterated with metanil yellow over a range of 0–2% (w/w). The images of 150 adulterated samples and 10 control samples were used for generating calibration and predictions sets. Partial least squares regression (PLSR) models were developed based on different spectral preprocessing techniques, full spectrum and wavelengths selected through competitive adaptive reweighted sampling (CARS), iteratively retaining informative variables (IRIV) algorithms for predicting the adulterant. Further, one-dimensional convolutional neural network (1D-CNN) was used for calibration model development to predict adulterant concentration. When using full spectra, PLSR yielded a model with correlation coefficient of prediction (R2p) of 0.978 with 2nd derivative preprocessing, whereas 1D-CNN produced a model with R2 of 0.992 with no spectral preprocessing for adulterant prediction. Furthermore, IRIV selected wavelengths with no preprocessing and CARS selected wavelengths with 2nd derivative preprocessing along with PLSR yielded R2 of 0.989.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
殷权威完成签到,获得积分10
刚刚
刚刚
风出袖发布了新的文献求助30
1秒前
huangr123发布了新的文献求助10
1秒前
爱因斯宣发布了新的文献求助10
1秒前
只如初发布了新的文献求助10
2秒前
kirirto完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
黄紫红蓝发布了新的文献求助10
4秒前
5秒前
5秒前
anna1992发布了新的文献求助10
6秒前
6秒前
7秒前
cquank发布了新的文献求助10
7秒前
SYLH应助dongli6536采纳,获得10
7秒前
water完成签到,获得积分10
8秒前
上官若男应助shine采纳,获得10
8秒前
战战兢兢完成签到 ,获得积分10
8秒前
8秒前
Shinewei完成签到,获得积分10
8秒前
开心蘑菇应助自由的无色采纳,获得30
9秒前
fff完成签到,获得积分10
9秒前
10秒前
小鱼医生发布了新的文献求助10
10秒前
jyu发布了新的文献求助10
10秒前
11秒前
11秒前
xiejinhui发布了新的文献求助10
12秒前
kiki完成签到 ,获得积分10
12秒前
铁甲小宝发布了新的文献求助10
12秒前
Shinewei发布了新的文献求助10
12秒前
13秒前
13秒前
久9完成签到 ,获得积分10
15秒前
15秒前
cquank完成签到,获得积分10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650