A new meta-transfer learning method with freezing operation for few-shot bearing fault diagnosis

过度拟合 计算机科学 人工智能 元学习(计算机科学) 学习迁移 机器学习 断层(地质) 超参数 人工神经网络 方位(导航) 深度学习 任务(项目管理) 工程类 系统工程 地震学 地质学
作者
Peiqi Wang,Jingde Li,Shubei Wang,Fusheng Zhang,Juanjuan Shi,Changqing Shen
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (7): 074005-074005 被引量:17
标识
DOI:10.1088/1361-6501/acc67b
摘要

Abstract Deep learning for bearing fault diagnosis often requires a large quantity of comprehensive data to give support in the field of rotating machinery fault diagnosis. However, large-quantity datasets for model training are difficult to obtain in actual working environments. Therefore, bearing fault diagnosis problems under practical working conditions are often considered few-shot problems. Meta-learning can be adopted to solve these few-shot problems. Traditional meta-learning methods, however, can lead to model overfitting, and shallow neural networks are usually used to avoid overfitting. As a result, the features extracted by the shallow neural network are insufficiently rich to exploit the optimal performance of the model. A few-shot fault diagnosis method based on meta-learning, named meta-transfer learning with freezing operation (MTLFO), is proposed in this study to solve these problems. MTLFO can learn new knowledge rapidly through a small number of samples. The hyperparameter self-regulation ability of meta-learning is adopted by MTLFO, and a freezing operation is used to deal with the neuronal nature of meta-learning to ensure that the neurons from different tasks are transferred by utilizing scaling and shifting. MTLFO avoids the overfitting problem in traditional meta-learning methods and presents more advantages in solving few-shot problems in fault diagnosis compared with other types of methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助健忘的初翠采纳,获得10
1秒前
1秒前
星辰大海应助妥妥酱采纳,获得10
1秒前
威武的大象完成签到,获得积分20
1秒前
温友儿完成签到,获得积分10
1秒前
halosheep发布了新的文献求助10
3秒前
啦啦啦发布了新的文献求助10
4秒前
shiqi1108发布了新的文献求助10
5秒前
蛋泥完成签到,获得积分10
5秒前
希望天下0贩的0应助lulu采纳,获得10
6秒前
6秒前
xiaogang127发布了新的文献求助10
7秒前
7秒前
guohoumei完成签到,获得积分20
9秒前
10秒前
星辰大海应助Singularity采纳,获得10
11秒前
12秒前
13秒前
tang发布了新的文献求助10
13秒前
完美世界应助止心所至采纳,获得10
14秒前
xuehan完成签到,获得积分10
14秒前
斯文败类应助yuyu采纳,获得10
15秒前
shadow完成签到,获得积分10
15秒前
17秒前
xtw发布了新的文献求助10
17秒前
脑洞疼应助顺心觅荷采纳,获得10
19秒前
眼圆广志完成签到,获得积分10
20秒前
打打应助应夏山采纳,获得10
20秒前
halosheep完成签到,获得积分10
22秒前
兮兮兮兮兮兮完成签到,获得积分10
23秒前
科研通AI2S应助Biggest采纳,获得10
24秒前
24秒前
小二郎应助灌灌灌灌v采纳,获得10
25秒前
26秒前
咕噜发布了新的文献求助10
28秒前
gobbler发布了新的文献求助10
28秒前
传奇3应助何敏娟采纳,获得10
28秒前
30秒前
30秒前
小盼完成签到,获得积分10
30秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234215
求助须知:如何正确求助?哪些是违规求助? 2880628
关于积分的说明 8216267
捐赠科研通 2548212
什么是DOI,文献DOI怎么找? 1377613
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623302