A new meta-transfer learning method with freezing operation for few-shot bearing fault diagnosis

过度拟合 计算机科学 人工智能 元学习(计算机科学) 学习迁移 机器学习 断层(地质) 超参数 人工神经网络 方位(导航) 深度学习 任务(项目管理) 工程类 地质学 地震学 系统工程
作者
Peiqi Wang,Jingde Li,Shubei Wang,Fusheng Zhang,Juanjuan Shi,Changqing Shen
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (7): 074005-074005 被引量:21
标识
DOI:10.1088/1361-6501/acc67b
摘要

Abstract Deep learning for bearing fault diagnosis often requires a large quantity of comprehensive data to give support in the field of rotating machinery fault diagnosis. However, large-quantity datasets for model training are difficult to obtain in actual working environments. Therefore, bearing fault diagnosis problems under practical working conditions are often considered few-shot problems. Meta-learning can be adopted to solve these few-shot problems. Traditional meta-learning methods, however, can lead to model overfitting, and shallow neural networks are usually used to avoid overfitting. As a result, the features extracted by the shallow neural network are insufficiently rich to exploit the optimal performance of the model. A few-shot fault diagnosis method based on meta-learning, named meta-transfer learning with freezing operation (MTLFO), is proposed in this study to solve these problems. MTLFO can learn new knowledge rapidly through a small number of samples. The hyperparameter self-regulation ability of meta-learning is adopted by MTLFO, and a freezing operation is used to deal with the neuronal nature of meta-learning to ensure that the neurons from different tasks are transferred by utilizing scaling and shifting. MTLFO avoids the overfitting problem in traditional meta-learning methods and presents more advantages in solving few-shot problems in fault diagnosis compared with other types of methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
一枚小医生怎么办完成签到,获得积分10
3秒前
2021发布了新的文献求助10
5秒前
小雪糕的丈母娘完成签到 ,获得积分10
5秒前
5秒前
5秒前
wsy发布了新的文献求助10
7秒前
瞿寒发布了新的文献求助30
10秒前
10秒前
古月发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
12秒前
老迟到的芹菜完成签到,获得积分10
12秒前
12秒前
小呱发布了新的文献求助30
15秒前
活泼莫英发布了新的文献求助10
16秒前
meat12完成签到,获得积分10
17秒前
大个应助可靠的电源采纳,获得10
17秒前
18秒前
科研通AI2S应助魔幻蓉采纳,获得10
18秒前
18秒前
18秒前
19秒前
Ryo发布了新的文献求助10
20秒前
chen_hebo发布了新的文献求助100
21秒前
22秒前
shudder发布了新的文献求助10
23秒前
juanjuan完成签到,获得积分10
24秒前
程瑞哲发布了新的文献求助10
24秒前
独角兽完成签到 ,获得积分10
24秒前
种花兔完成签到,获得积分10
26秒前
高大迎曼完成签到,获得积分10
28秒前
Ryo完成签到,获得积分10
30秒前
科研通AI2S应助秋水浮萍采纳,获得10
31秒前
33秒前
RenchengHuang完成签到,获得积分10
34秒前
遇上就这样吧应助钵钵鸡采纳,获得30
35秒前
爱吃草莓和菠萝的吕可爱完成签到,获得积分10
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956119
求助须知:如何正确求助?哪些是违规求助? 3502336
关于积分的说明 11107217
捐赠科研通 3232912
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870422
科研通“疑难数据库(出版商)”最低求助积分说明 802019