清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A new meta-transfer learning method with freezing operation for few-shot bearing fault diagnosis

过度拟合 计算机科学 人工智能 元学习(计算机科学) 学习迁移 机器学习 断层(地质) 超参数 人工神经网络 方位(导航) 深度学习 任务(项目管理) 工程类 系统工程 地震学 地质学
作者
Peiqi Wang,Jingde Li,Shubei Wang,Fusheng Zhang,Juanjuan Shi,Changqing Shen
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (7): 074005-074005 被引量:32
标识
DOI:10.1088/1361-6501/acc67b
摘要

Abstract Deep learning for bearing fault diagnosis often requires a large quantity of comprehensive data to give support in the field of rotating machinery fault diagnosis. However, large-quantity datasets for model training are difficult to obtain in actual working environments. Therefore, bearing fault diagnosis problems under practical working conditions are often considered few-shot problems. Meta-learning can be adopted to solve these few-shot problems. Traditional meta-learning methods, however, can lead to model overfitting, and shallow neural networks are usually used to avoid overfitting. As a result, the features extracted by the shallow neural network are insufficiently rich to exploit the optimal performance of the model. A few-shot fault diagnosis method based on meta-learning, named meta-transfer learning with freezing operation (MTLFO), is proposed in this study to solve these problems. MTLFO can learn new knowledge rapidly through a small number of samples. The hyperparameter self-regulation ability of meta-learning is adopted by MTLFO, and a freezing operation is used to deal with the neuronal nature of meta-learning to ensure that the neurons from different tasks are transferred by utilizing scaling and shifting. MTLFO avoids the overfitting problem in traditional meta-learning methods and presents more advantages in solving few-shot problems in fault diagnosis compared with other types of methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萝卜猪完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
16秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
小鱼应助科研通管家采纳,获得50
1分钟前
完美世界应助AA采纳,获得10
2分钟前
年轻千愁完成签到 ,获得积分10
2分钟前
练得身形似鹤形完成签到 ,获得积分10
2分钟前
3分钟前
AA发布了新的文献求助10
3分钟前
3分钟前
马铃薯完成签到,获得积分10
3分钟前
FashionBoy应助AA采纳,获得10
4分钟前
yf完成签到 ,获得积分10
4分钟前
zxq完成签到 ,获得积分10
4分钟前
drhwang完成签到,获得积分10
5分钟前
特特雷珀萨努完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
Chonger发布了新的文献求助10
5分钟前
film完成签到 ,获得积分10
5分钟前
AA发布了新的文献求助10
5分钟前
红火完成签到 ,获得积分10
6分钟前
6分钟前
情怀应助兜兜采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
AA完成签到,获得积分20
6分钟前
雪山飞龙发布了新的文献求助10
6分钟前
ceeray23发布了新的文献求助20
6分钟前
兜兜发布了新的文献求助10
6分钟前
6分钟前
6分钟前
兜兜完成签到,获得积分10
6分钟前
7分钟前
量子星尘发布了新的文献求助10
7分钟前
精明寒松完成签到 ,获得积分10
7分钟前
郑阔完成签到,获得积分10
7分钟前
SciGPT应助ceeray23采纳,获得20
7分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584778
求助须知:如何正确求助?哪些是违规求助? 4668667
关于积分的说明 14771555
捐赠科研通 4614011
什么是DOI,文献DOI怎么找? 2530220
邀请新用户注册赠送积分活动 1499084
关于科研通互助平台的介绍 1467531