A new meta-transfer learning method with freezing operation for few-shot bearing fault diagnosis

过度拟合 计算机科学 人工智能 元学习(计算机科学) 学习迁移 机器学习 断层(地质) 超参数 人工神经网络 方位(导航) 深度学习 任务(项目管理) 工程类 系统工程 地震学 地质学
作者
Peiqi Wang,Jingde Li,Shubei Wang,Fusheng Zhang,Juanjuan Shi,Changqing Shen
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (7): 074005-074005 被引量:32
标识
DOI:10.1088/1361-6501/acc67b
摘要

Abstract Deep learning for bearing fault diagnosis often requires a large quantity of comprehensive data to give support in the field of rotating machinery fault diagnosis. However, large-quantity datasets for model training are difficult to obtain in actual working environments. Therefore, bearing fault diagnosis problems under practical working conditions are often considered few-shot problems. Meta-learning can be adopted to solve these few-shot problems. Traditional meta-learning methods, however, can lead to model overfitting, and shallow neural networks are usually used to avoid overfitting. As a result, the features extracted by the shallow neural network are insufficiently rich to exploit the optimal performance of the model. A few-shot fault diagnosis method based on meta-learning, named meta-transfer learning with freezing operation (MTLFO), is proposed in this study to solve these problems. MTLFO can learn new knowledge rapidly through a small number of samples. The hyperparameter self-regulation ability of meta-learning is adopted by MTLFO, and a freezing operation is used to deal with the neuronal nature of meta-learning to ensure that the neurons from different tasks are transferred by utilizing scaling and shifting. MTLFO avoids the overfitting problem in traditional meta-learning methods and presents more advantages in solving few-shot problems in fault diagnosis compared with other types of methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
realrrr完成签到 ,获得积分10
刚刚
ds完成签到,获得积分10
1秒前
hhh123发布了新的文献求助10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得30
2秒前
追寻的帽子完成签到 ,获得积分10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
舒苏应助科研通管家采纳,获得20
2秒前
浮游应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
2秒前
ccm应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
ccm应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
林夏应助科研通管家采纳,获得10
3秒前
JamesPei应助sanmu采纳,获得10
5秒前
天天快乐应助sanmu采纳,获得30
5秒前
跳跃幼荷完成签到,获得积分10
7秒前
huenguyenvan完成签到,获得积分10
8秒前
9秒前
ZhaoW完成签到,获得积分10
10秒前
吱吱今天要向上完成签到,获得积分10
11秒前
Elan完成签到 ,获得积分10
11秒前
11秒前
11秒前
脑洞疼应助66采纳,获得10
11秒前
Robigo完成签到,获得积分10
11秒前
12秒前
研友_Z7XY28完成签到,获得积分10
12秒前
13秒前
柠檬发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642756
求助须知:如何正确求助?哪些是违规求助? 4759612
关于积分的说明 15018685
捐赠科研通 4801257
什么是DOI,文献DOI怎么找? 2566565
邀请新用户注册赠送积分活动 1524558
关于科研通互助平台的介绍 1484100