亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A new meta-transfer learning method with freezing operation for few-shot bearing fault diagnosis

过度拟合 计算机科学 人工智能 元学习(计算机科学) 学习迁移 机器学习 断层(地质) 超参数 人工神经网络 方位(导航) 深度学习 任务(项目管理) 工程类 系统工程 地震学 地质学
作者
Peiqi Wang,Jingde Li,Shubei Wang,Fusheng Zhang,Juanjuan Shi,Changqing Shen
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (7): 074005-074005 被引量:32
标识
DOI:10.1088/1361-6501/acc67b
摘要

Abstract Deep learning for bearing fault diagnosis often requires a large quantity of comprehensive data to give support in the field of rotating machinery fault diagnosis. However, large-quantity datasets for model training are difficult to obtain in actual working environments. Therefore, bearing fault diagnosis problems under practical working conditions are often considered few-shot problems. Meta-learning can be adopted to solve these few-shot problems. Traditional meta-learning methods, however, can lead to model overfitting, and shallow neural networks are usually used to avoid overfitting. As a result, the features extracted by the shallow neural network are insufficiently rich to exploit the optimal performance of the model. A few-shot fault diagnosis method based on meta-learning, named meta-transfer learning with freezing operation (MTLFO), is proposed in this study to solve these problems. MTLFO can learn new knowledge rapidly through a small number of samples. The hyperparameter self-regulation ability of meta-learning is adopted by MTLFO, and a freezing operation is used to deal with the neuronal nature of meta-learning to ensure that the neurons from different tasks are transferred by utilizing scaling and shifting. MTLFO avoids the overfitting problem in traditional meta-learning methods and presents more advantages in solving few-shot problems in fault diagnosis compared with other types of methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助yf采纳,获得10
13秒前
ceeray23应助科研通管家采纳,获得10
13秒前
15秒前
28秒前
TEMPO完成签到,获得积分10
1分钟前
1分钟前
TEMPO发布了新的文献求助10
1分钟前
1分钟前
1分钟前
yf发布了新的文献求助10
1分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
mrjohn完成签到,获得积分0
2分钟前
LIFE2020完成签到 ,获得积分10
2分钟前
2分钟前
Arain456发布了新的文献求助10
2分钟前
2分钟前
HC发布了新的文献求助10
2分钟前
hu完成签到 ,获得积分10
3分钟前
科研通AI6应助HC采纳,获得10
3分钟前
3分钟前
HC完成签到,获得积分10
3分钟前
汉堡包应助hu采纳,获得10
3分钟前
fuxiu完成签到,获得积分10
3分钟前
佳佳发布了新的文献求助10
3分钟前
隐形曼青应助佳佳采纳,获得10
3分钟前
从来都不会放弃zr完成签到,获得积分0
3分钟前
4分钟前
佳佳发布了新的文献求助10
4分钟前
lalala完成签到,获得积分10
4分钟前
4分钟前
Akim应助佳佳采纳,获得10
5分钟前
gaogaogao完成签到,获得积分10
5分钟前
5分钟前
Said1223发布了新的文献求助10
5分钟前
5分钟前
wubizilv发布了新的文献求助10
5分钟前
Lucas应助Said1223采纳,获得10
5分钟前
5分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651010
求助须知:如何正确求助?哪些是违规求助? 4782702
关于积分的说明 15052953
捐赠科研通 4809790
什么是DOI,文献DOI怎么找? 2572590
邀请新用户注册赠送积分活动 1528597
关于科研通互助平台的介绍 1487601