A new meta-transfer learning method with freezing operation for few-shot bearing fault diagnosis

过度拟合 计算机科学 人工智能 元学习(计算机科学) 学习迁移 机器学习 断层(地质) 超参数 人工神经网络 方位(导航) 深度学习 任务(项目管理) 工程类 系统工程 地震学 地质学
作者
Peiqi Wang,Jingde Li,Shubei Wang,Fusheng Zhang,Juanjuan Shi,Changqing Shen
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (7): 074005-074005 被引量:23
标识
DOI:10.1088/1361-6501/acc67b
摘要

Abstract Deep learning for bearing fault diagnosis often requires a large quantity of comprehensive data to give support in the field of rotating machinery fault diagnosis. However, large-quantity datasets for model training are difficult to obtain in actual working environments. Therefore, bearing fault diagnosis problems under practical working conditions are often considered few-shot problems. Meta-learning can be adopted to solve these few-shot problems. Traditional meta-learning methods, however, can lead to model overfitting, and shallow neural networks are usually used to avoid overfitting. As a result, the features extracted by the shallow neural network are insufficiently rich to exploit the optimal performance of the model. A few-shot fault diagnosis method based on meta-learning, named meta-transfer learning with freezing operation (MTLFO), is proposed in this study to solve these problems. MTLFO can learn new knowledge rapidly through a small number of samples. The hyperparameter self-regulation ability of meta-learning is adopted by MTLFO, and a freezing operation is used to deal with the neuronal nature of meta-learning to ensure that the neurons from different tasks are transferred by utilizing scaling and shifting. MTLFO avoids the overfitting problem in traditional meta-learning methods and presents more advantages in solving few-shot problems in fault diagnosis compared with other types of methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shelley完成签到,获得积分10
刚刚
陌辞柚完成签到 ,获得积分10
1秒前
自然映波完成签到,获得积分10
3秒前
3秒前
4秒前
Wecple发布了新的文献求助10
4秒前
义气凝阳发布了新的文献求助30
4秒前
奇拉维特完成签到 ,获得积分10
5秒前
rowena完成签到,获得积分10
5秒前
hhh完成签到,获得积分10
5秒前
5秒前
6秒前
科研通AI6应助dyy采纳,获得10
6秒前
6秒前
SciGPT应助小江不饿采纳,获得10
7秒前
zm发布了新的文献求助15
7秒前
彭于晏应助风的记忆采纳,获得10
7秒前
cxt0318发布了新的文献求助10
8秒前
LLY发布了新的文献求助10
8秒前
8秒前
林屿溪发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
磊磊完成签到,获得积分10
10秒前
蛋黄啵啵完成签到 ,获得积分10
10秒前
10秒前
11秒前
沐子诗发布了新的文献求助10
11秒前
善学以致用应助好好采纳,获得10
11秒前
12秒前
HHH完成签到 ,获得积分10
12秒前
12秒前
12秒前
yuanyuan发布了新的文献求助20
12秒前
Iris完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
kkem发布了新的文献求助30
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5271078
求助须知:如何正确求助?哪些是违规求助? 4428940
关于积分的说明 13786582
捐赠科研通 4306892
什么是DOI,文献DOI怎么找? 2363309
邀请新用户注册赠送积分活动 1358974
关于科研通互助平台的介绍 1321910