亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A new meta-transfer learning method with freezing operation for few-shot bearing fault diagnosis

过度拟合 计算机科学 人工智能 元学习(计算机科学) 学习迁移 机器学习 断层(地质) 超参数 人工神经网络 方位(导航) 深度学习 任务(项目管理) 工程类 系统工程 地震学 地质学
作者
Peiqi Wang,Jingde Li,Shubei Wang,Fusheng Zhang,Juanjuan Shi,Changqing Shen
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (7): 074005-074005 被引量:32
标识
DOI:10.1088/1361-6501/acc67b
摘要

Abstract Deep learning for bearing fault diagnosis often requires a large quantity of comprehensive data to give support in the field of rotating machinery fault diagnosis. However, large-quantity datasets for model training are difficult to obtain in actual working environments. Therefore, bearing fault diagnosis problems under practical working conditions are often considered few-shot problems. Meta-learning can be adopted to solve these few-shot problems. Traditional meta-learning methods, however, can lead to model overfitting, and shallow neural networks are usually used to avoid overfitting. As a result, the features extracted by the shallow neural network are insufficiently rich to exploit the optimal performance of the model. A few-shot fault diagnosis method based on meta-learning, named meta-transfer learning with freezing operation (MTLFO), is proposed in this study to solve these problems. MTLFO can learn new knowledge rapidly through a small number of samples. The hyperparameter self-regulation ability of meta-learning is adopted by MTLFO, and a freezing operation is used to deal with the neuronal nature of meta-learning to ensure that the neurons from different tasks are transferred by utilizing scaling and shifting. MTLFO avoids the overfitting problem in traditional meta-learning methods and presents more advantages in solving few-shot problems in fault diagnosis compared with other types of methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
24秒前
不安青牛应助zhangxiaoqing采纳,获得10
24秒前
小马甲应助傅嘉庆采纳,获得10
26秒前
啦啦啦发布了新的文献求助10
32秒前
1分钟前
xxi发布了新的文献求助10
1分钟前
大模型应助Chloe采纳,获得10
1分钟前
小白完成签到 ,获得积分10
1分钟前
爆米花应助啦啦啦采纳,获得10
1分钟前
Jasper应助哈皮波采纳,获得10
1分钟前
1分钟前
哈皮波发布了新的文献求助10
1分钟前
科目三应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
Chloe发布了新的文献求助10
2分钟前
开放道天发布了新的文献求助30
2分钟前
2分钟前
2分钟前
鱼鱼片片发布了新的文献求助10
2分钟前
啦啦啦发布了新的文献求助10
2分钟前
852应助开放道天采纳,获得10
2分钟前
啦啦啦完成签到,获得积分10
3分钟前
bbbbb发布了新的文献求助30
3分钟前
bbbbb完成签到,获得积分10
3分钟前
wwe完成签到,获得积分10
3分钟前
不能吃太饱完成签到 ,获得积分10
3分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
深情安青应助科研通管家采纳,获得10
4分钟前
不安青牛应助zhangxiaoqing采纳,获得10
5分钟前
5分钟前
ffff完成签到 ,获得积分10
5分钟前
田様应助科研通管家采纳,获得10
6分钟前
6分钟前
blush完成签到 ,获得积分10
6分钟前
开放道天发布了新的文献求助10
6分钟前
小李老博完成签到,获得积分10
7分钟前
Orange应助哈皮波采纳,获得10
7分钟前
7分钟前
哈皮波发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681725
求助须知:如何正确求助?哪些是违规求助? 5012386
关于积分的说明 15176015
捐赠科研通 4841250
什么是DOI,文献DOI怎么找? 2595040
邀请新用户注册赠送积分活动 1548025
关于科研通互助平台的介绍 1506079