Causal Feature Selection in the Presence of Sample Selection Bias

虚假关系 特征选择 计算机科学 选择偏差 人工智能 特征(语言学) 模式识别(心理学) 样品(材料) 熵(时间箭头) 选择(遗传算法) 样本量测定 数据挖掘 机器学习 统计 数学 语言学 哲学 化学 物理 色谱法 量子力学
作者
Shuai Yang,Xianjie Guo,Kui Yu,Xiaoling Huang,Tingting Jiang,Jin He,Lichuan Gu
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:14 (5): 1-18 被引量:5
标识
DOI:10.1145/3604809
摘要

Almost all existing causal feature selection methods are proposed without considering the problem of sample selection bias. However, in practice, as data-gathering process cannot be fully controlled, sample selection bias often occurs, leading to spurious correlations between features and the class variable, which seriously deteriorates the performance of those existing methods. In this article, we study the problem of causal feature selection under sample selection bias and propose a novel Progressive Causal Feature Selection (PCFS) algorithm which has three phases. First, PCFS learns the sample weights to balance the treated group and control group distributions corresponding to each feature for removing spurious correlations. Second, based on the sample weights, PCFS uses a weighted cross-entropy model to estimate the causal effect of each feature and removes some irrelevant features from the confounder set. Third, PCFS progressively repeats the first two phases to remove more irrelevant features and finally obtains a causal feature set. Using synthetic and real-world datasets, the experiments have validated the effectiveness of PCFS, in comparison with several state-of-the-art classical and causal feature selection methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小马甲应助Yu采纳,获得10
1秒前
Maruko_0_发布了新的文献求助10
1秒前
图图应助安详的从波采纳,获得10
1秒前
醉意拥桃枝完成签到 ,获得积分10
1秒前
Frank发布了新的文献求助30
1秒前
1秒前
1秒前
2秒前
CipherSage应助瞬间de回眸采纳,获得10
2秒前
完美世界应助jj采纳,获得10
2秒前
潇洒的凌雪完成签到,获得积分20
2秒前
2秒前
彭于彦祖应助Yyyyyy11采纳,获得30
3秒前
3秒前
4秒前
AiQi发布了新的文献求助10
4秒前
4秒前
SireTD完成签到,获得积分10
4秒前
4秒前
学霸扬完成签到,获得积分10
5秒前
nkcyn发布了新的文献求助30
5秒前
5秒前
丘比特应助森距离采纳,获得10
5秒前
5秒前
6秒前
月皎完成签到,获得积分10
6秒前
英姑应助自由采纳,获得10
7秒前
友好怜珊发布了新的文献求助10
7秒前
李健应助岛err采纳,获得10
7秒前
科研通AI2S应助coco采纳,获得10
8秒前
丘比特应助谢灵运采纳,获得10
8秒前
健忘不言发布了新的文献求助10
8秒前
Margot发布了新的文献求助10
8秒前
快冲冲冲发布了新的文献求助10
8秒前
我想静静发布了新的文献求助100
8秒前
9秒前
9秒前
ding应助调皮的勒采纳,获得10
9秒前
科研通AI6应助重要的蓝血采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505994
求助须知:如何正确求助?哪些是违规求助? 4601482
关于积分的说明 14476730
捐赠科研通 4535445
什么是DOI,文献DOI怎么找? 2485408
邀请新用户注册赠送积分活动 1468357
关于科研通互助平台的介绍 1440869