Causal Feature Selection in the Presence of Sample Selection Bias

虚假关系 特征选择 计算机科学 选择偏差 人工智能 特征(语言学) 模式识别(心理学) 样品(材料) 熵(时间箭头) 选择(遗传算法) 样本量测定 数据挖掘 机器学习 统计 数学 语言学 哲学 化学 物理 色谱法 量子力学
作者
Shuai Yang,Xianjie Guo,Ke Yu,Xiaoling Huang,Tingting Jiang,He Jiang,Lichuan Gu
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:14 (5): 1-18 被引量:3
标识
DOI:10.1145/3604809
摘要

Almost all existing causal feature selection methods are proposed without considering the problem of sample selection bias. However, in practice, as data-gathering process cannot be fully controlled, sample selection bias often occurs, leading to spurious correlations between features and the class variable, which seriously deteriorates the performance of those existing methods. In this article, we study the problem of causal feature selection under sample selection bias and propose a novel Progressive Causal Feature Selection (PCFS) algorithm which has three phases. First, PCFS learns the sample weights to balance the treated group and control group distributions corresponding to each feature for removing spurious correlations. Second, based on the sample weights, PCFS uses a weighted cross-entropy model to estimate the causal effect of each feature and removes some irrelevant features from the confounder set. Third, PCFS progressively repeats the first two phases to remove more irrelevant features and finally obtains a causal feature set. Using synthetic and real-world datasets, the experiments have validated the effectiveness of PCFS, in comparison with several state-of-the-art classical and causal feature selection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助wxy采纳,获得10
1秒前
zhangyx发布了新的文献求助10
2秒前
慕青应助hayk采纳,获得10
3秒前
望舒发布了新的文献求助10
4秒前
邵洋完成签到,获得积分10
4秒前
5秒前
杀死史迪仔完成签到 ,获得积分10
5秒前
科研通AI2S应助Fury采纳,获得10
6秒前
6秒前
夏至0890完成签到,获得积分10
8秒前
8秒前
Melody发布了新的文献求助10
9秒前
Yuantian发布了新的文献求助10
10秒前
10秒前
彭于晏应助邵洋采纳,获得10
13秒前
13秒前
oh发布了新的文献求助10
15秒前
英俊的铭应助yl采纳,获得10
15秒前
烟花应助Yuantian采纳,获得10
15秒前
罗又柔应助飘逸的白玉采纳,获得10
17秒前
17秒前
领导范儿应助loveananya采纳,获得10
18秒前
18秒前
姜姜发布了新的文献求助10
20秒前
Owen应助123采纳,获得10
20秒前
21秒前
22秒前
浩瀚当空完成签到,获得积分10
24秒前
研友_VZG7GZ应助Melody采纳,获得10
24秒前
26秒前
无限安雁发布了新的文献求助10
27秒前
28秒前
29秒前
烟花应助zhangyuheng采纳,获得10
30秒前
31秒前
yl发布了新的文献求助10
32秒前
33秒前
灵巧墨镜完成签到,获得积分10
33秒前
33秒前
我是老大应助粗心的雅山采纳,获得10
33秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138429
求助须知:如何正确求助?哪些是违规求助? 2789380
关于积分的说明 7791188
捐赠科研通 2445655
什么是DOI,文献DOI怎么找? 1300644
科研通“疑难数据库(出版商)”最低求助积分说明 625975
版权声明 601065